These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 34941506)
1. Spectral Analysis of Tissue Displacement for Cardiac Activation Mapping: Ex Vivo Working Heart and In Vivo Study. Robert J; Bessiere F; Cao E; Loyer V; Abell E; Vaillant F; Quesson B; Catheline S; Lafon C IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Mar; 69(3):942-956. PubMed ID: 34941506 [TBL] [Abstract][Full Text] [Related]
2. Electromechanical wave imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo. Costet A; Wan E; Bunting E; Grondin J; Garan H; Konofagou E Phys Med Biol; 2016 Nov; 61(22):8105-8119. PubMed ID: 27782003 [TBL] [Abstract][Full Text] [Related]
3. A clinical feasibility study of atrial and ventricular electromechanical wave imaging. Provost J; Gambhir A; Vest J; Garan H; Konofagou EE Heart Rhythm; 2013 Jun; 10(6):856-62. PubMed ID: 23454060 [TBL] [Abstract][Full Text] [Related]
4. High Frame Rate Ultrasound for Electromechanical Wave Imaging to Differentiate Endocardial From Epicardial Myocardial Activation. Bessière F; Zorgani A; Robert J; Daunizeau L; Cao E; Vaillant F; Abell E; Quesson B; Catheline S; Chevalier P; Lafon C Ultrasound Med Biol; 2020 Feb; 46(2):405-414. PubMed ID: 31767455 [TBL] [Abstract][Full Text] [Related]
5. Imaging the Propagation of the Electromechanical Wave in Heart Failure Patients with Cardiac Resynchronization Therapy. Bunting E; Lambrakos L; Kemper P; Whang W; Garan H; Konofagou E Pacing Clin Electrophysiol; 2017 Jan; 40(1):35-45. PubMed ID: 27790723 [TBL] [Abstract][Full Text] [Related]
6. Non-invasive Characterization of Focal Arrhythmia with Electromechanical Wave Imaging in Vivo. Costet A; Wan E; Melki L; Bunting E; Grondin J; Garan H; Konofagou E Ultrasound Med Biol; 2018 Nov; 44(11):2241-2249. PubMed ID: 30093340 [TBL] [Abstract][Full Text] [Related]
7. Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm. Grondin J; Costet A; Bunting E; Gambhir A; Garan H; Wan E; Konofagou EE Heart Rhythm; 2016 Nov; 13(11):2221-2227. PubMed ID: 27498277 [TBL] [Abstract][Full Text] [Related]
8. Electromechanical wave imaging of normal and ischemic hearts in vivo. Provost J; Lee WN; Fujikura K; Konofagou EE IEEE Trans Med Imaging; 2010 Mar; 29(3):625-35. PubMed ID: 19709966 [TBL] [Abstract][Full Text] [Related]
9. Electromechanical wave imaging of biologically and electrically paced canine hearts in vivo. Costet A; Provost J; Gambhir A; Bobkov Y; Danilo P; Boink GJ; Rosen MR; Konofagou EE Ultrasound Med Biol; 2014 Jan; 40(1):177-87. PubMed ID: 24239363 [TBL] [Abstract][Full Text] [Related]
10. Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans. Melki L; Costet A; Konofagou EE Ultrasound Med Biol; 2017 Oct; 43(10):2256-2268. PubMed ID: 28778420 [TBL] [Abstract][Full Text] [Related]
11. Technical Note: A 3-D rendering algorithm for electromechanical wave imaging of a beating heart. Nauleau P; Melki L; Wan E; Konofagou E Med Phys; 2017 Sep; 44(9):4766-4772. PubMed ID: 28626939 [TBL] [Abstract][Full Text] [Related]
13. Imaging the electromechanical activity of the heart in vivo. Provost J; Lee WN; Fujikura K; Konofagou EE Proc Natl Acad Sci U S A; 2011 May; 108(21):8565-70. PubMed ID: 21571641 [TBL] [Abstract][Full Text] [Related]
14. Mapping of cardiac electrical activation with electromechanical wave imaging: an in silico-in vivo reciprocity study. Provost J; Gurev V; Trayanova N; Konofagou EE Heart Rhythm; 2011 May; 8(5):752-9. PubMed ID: 21185403 [TBL] [Abstract][Full Text] [Related]
15. Canine left ventricle electromechanical behavior under different pacing modes. Vo Thang TT; Thibault B; Finnerty V; Pelletier-Galarneau M; Khairy P; Grégoire J; Harel F J Interv Card Electrophysiol; 2012 Oct; 35(1):11-7. PubMed ID: 22580714 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart. Han C; Pogwizd SM; Killingsworth CR; He B Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H244-52. PubMed ID: 21984548 [TBL] [Abstract][Full Text] [Related]
17. Atrial electromechanical cycle length mapping in paced canine hearts in vivo. Costet A; Bunting E; Grondin J; Gambhir A; Konofagou EE IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1277-87. PubMed ID: 26168174 [TBL] [Abstract][Full Text] [Related]
18. Can body surface microvolt T-wave alternans distinguish concordant and discordant intracardiac alternans? Floré V; Claus P; Symons R; Smith GL; Sipido KR; Willems R Pacing Clin Electrophysiol; 2013 Aug; 36(8):1007-16. PubMed ID: 23614703 [TBL] [Abstract][Full Text] [Related]
19. Usage of cardiac simulation results in source localization of focal epicardial arrhythmias using statistical estimation. Cunedioglu U; Baysoy E; Yilmaz B Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():589-92. PubMed ID: 19162724 [TBL] [Abstract][Full Text] [Related]
20. Reconstruction of endocardial potentials and activation sequences from intracavitary probe measurements. Localization of pacing sites and effects of myocardial structure. Khoury DS; Taccardi B; Lux RL; Ershler PR; Rudy Y Circulation; 1995 Feb; 91(3):845-63. PubMed ID: 7828314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]