These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mapping soil arsenic pollution at a brownfield site using satellite hyperspectral imagery and machine learning. Jia X; Hou D Sci Total Environ; 2023 Jan; 857(Pt 2):159387. PubMed ID: 36240926 [TBL] [Abstract][Full Text] [Related]
3. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Jia X; Cao Y; O'Connor D; Zhu J; Tsang DCW; Zou B; Hou D Environ Pollut; 2021 Feb; 270():116281. PubMed ID: 33348140 [TBL] [Abstract][Full Text] [Related]
4. Estimation of Arsenic Content in Soil Based on Laboratory and Field Reflectance Spectroscopy. Wei L; Yuan Z; Yu M; Huang C; Cao L Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510072 [No Abstract] [Full Text] [Related]
5. Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters. Soppa MA; Silva B; Steinmetz F; Keith D; Scheffler D; Bohn N; Bracher A Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208507 [TBL] [Abstract][Full Text] [Related]
6. SUREHYP: An Open Source Python Package for Preprocessing Hyperion Radiance Data and Retrieving Surface Reflectance. Miraglio T; Coops NC Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501908 [TBL] [Abstract][Full Text] [Related]
7. Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy). Cavalli RM; Fusilli L; Pascucci S; Pignatti S; Santini F Sensors (Basel); 2008 May; 8(5):3299-3320. PubMed ID: 27879879 [TBL] [Abstract][Full Text] [Related]
8. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Zhou T; Geng Y; Ji C; Xu X; Wang H; Pan J; Bumberger J; Haase D; Lausch A Sci Total Environ; 2021 Feb; 755(Pt 2):142661. PubMed ID: 33059134 [TBL] [Abstract][Full Text] [Related]
9. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
10. Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study. Naushad R; Kaur T; Ghaderpour E Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884087 [TBL] [Abstract][Full Text] [Related]
11. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S. Zhou Q; Flores A; Glenn NF; Walters R; Han B PLoS One; 2017; 12(8):e0180239. PubMed ID: 28777811 [TBL] [Abstract][Full Text] [Related]
12. Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China. Wang J; Shi T; Yu D; Teng D; Ge X; Zhang Z; Yang X; Wang H; Wu G Environ Pollut; 2020 Nov; 266(Pt 2):115412. PubMed ID: 32836049 [TBL] [Abstract][Full Text] [Related]
13. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification. Zhou T; Li Z; Pan J Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29382073 [TBL] [Abstract][Full Text] [Related]
14. Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series. Caughlin TT; Barber C; Asner GP; Glenn NF; Bohlman SA; Wilson CH Ecol Appl; 2021 Jan; 31(1):e02208. PubMed ID: 32627902 [TBL] [Abstract][Full Text] [Related]
15. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery. Zhang P; Ke Y; Zhang Z; Wang M; Li P; Zhang S Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388781 [TBL] [Abstract][Full Text] [Related]
16. [Atmospheric correction of hyperion hyperspectral image based on FLAASH]. Yuan JG; Niu Z; Wang XP Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1181-5. PubMed ID: 19650448 [TBL] [Abstract][Full Text] [Related]
17. Estimation of Soil Arsenic Content with Hyperspectral Remote Sensing. Wei L; Pu H; Wang Z; Yuan Z; Yan X; Cao L Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708185 [TBL] [Abstract][Full Text] [Related]
18. Estimating PM Zhang P; Ma W; Wen F; Liu L; Yang L; Song J; Wang N; Liu Q Ecotoxicol Environ Saf; 2021 Dec; 225():112772. PubMed ID: 34530262 [TBL] [Abstract][Full Text] [Related]
19. Adoption of Machine Learning in Intelligent Terrain Classification of Hyperspectral Remote Sensing Images. Li Y; Wang J; Gao T; Sun Q; Zhang L; Tang M Comput Intell Neurosci; 2020; 2020():8886932. PubMed ID: 32952545 [TBL] [Abstract][Full Text] [Related]
20. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites. Maynard JJ; Karl JW PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]