These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34942392)

  • 1. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control.
    Tang Z; Yu H; Yang H; Zhang L; Zhang L
    Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An upper-limb power-assist exoskeleton using proportional myoelectric control.
    Tang Z; Zhang K; Sun S; Gao Z; Zhang L; Yang Z
    Sensors (Basel); 2014 Apr; 14(4):6677-94. PubMed ID: 24727501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG-Based Control in a Test Platform for Exoskeleton with One Degree of Freedom.
    Suplino LO; Sommer LF; Forner-Cordero A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5366-5369. PubMed ID: 31947068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Analysis of an Upper Limb Rehabilitation Robot Based on Multimodal Control.
    Ren H; Liu T; Wang J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Load Variation on Joint Angle Estimation From Surface EMG Signals.
    Tang Z; Yu H; Cang S
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1342-1350. PubMed ID: 26600163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S; Kim J
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SE-TCN network for continuous estimation of upper limb joint angles.
    Liu X; Wang J; Liang T; Lou C; Wang H; Liu X
    Math Biosci Eng; 2023 Jan; 20(2):3237-3260. PubMed ID: 36899579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sEMG-Based End-to-End Continues Prediction of Human Knee Joint Angles Using the Tightly Coupled Convolutional Transformer Model.
    Liang T; Sun N; Wang Q; Bu J; Li L; Chen Y; Cao M; Ma J; Liu T
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5272-5280. PubMed ID: 37566511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.
    Castro MC; Colombini EL; Aquino PT; Arjunan SP; Kumar DK
    Biomed Eng Online; 2014 Nov; 13():155. PubMed ID: 25422006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of joint angle based on surface electromyogram signals recorded at different load levels.
    Azab AM; Arvanch M; Mihaylova LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2538-2541. PubMed ID: 29060416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Upper-Limb Movement Intention Through Adaptive Dynamic Movement Primitives: A Proof-of-Concept Study with a Shoulder-Elbow Exoskeleton.
    Penna MF; Trigili E; Amato L; Eken H; Dell'Agnello F; Lanotte F; Gruppioni E; Vitiello N; Crea S
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.