These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34942417)

  • 1. Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil.
    Ubelaker DH; Plens CR; Soriano EP; Diniz MV; de Almeida Junior E; Junior ED; Júnior LF; Machado CEP
    Forensic Sci Int; 2022 Feb; 331():111143. PubMed ID: 34942417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of age at death on the lag time of radiocarbon values in human bone.
    Ubelaker DH; Thomas C; Olson JE
    Forensic Sci Int; 2015 Jun; 251():56-60. PubMed ID: 25863698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of bone sample selection when using radiocarbon analysis in cases of unidentified human remains.
    Johnstone-Belford E; Fallon SJ; Dipnall JF; Blau S
    Forensic Sci Int; 2022 Dec; 341():111480. PubMed ID: 36257096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of artificial radiocarbon in different skeletal and dental tissue types to evaluate date of death.
    Ubelaker DH; Buchholz BA; Stewart JE
    J Forensic Sci; 2006 May; 51(3):484-8. PubMed ID: 16696693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bomb pulse
    Quinn RL
    Am J Biol Anthropol; 2024 Apr; 183(4):e24887. PubMed ID: 38229464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining the use of different sample types following decomposition to estimate year of death using bomb pulse dating.
    Johnstone-Belford E; Fallon SJ; Dipnall JF; Blau S
    J Forensic Leg Med; 2022 Jan; 85():102275. PubMed ID: 34794085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiocarbon analysis of dental enamel and bone to evaluate date of birth and death: perspective from the southern hemisphere.
    Ubelaker DH; Parra RC
    Forensic Sci Int; 2011 May; 208(1-3):103-7. PubMed ID: 21167668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiocarbon analysis of human remains: a review of forensic applications.
    Ubelaker DH
    J Forensic Sci; 2014 Nov; 59(6):1466-72. PubMed ID: 25041129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiocarbon bomb-peak signal in tree-rings from the tropical Andes register low latitude atmospheric dynamics in the Southern Hemisphere.
    Ancapichún S; De Pol-Holz R; Christie DA; Santos GM; Collado-Fabbri S; Garreaud R; Lambert F; Orfanoz-Cheuquelaf A; Rojas M; Southon J; Turnbull JC; Creasman PP
    Sci Total Environ; 2021 Jun; 774():145126. PubMed ID: 33611001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone mineral density of vertebrae, proximal femur and os calcis in normal Greek subjects as assessed by dual-energy X-ray absorptiometry: comparison with other populations.
    Hadjidakis D; Kokkinakis E; Giannopoulos G; Merakos G; Raptis SA
    Eur J Clin Invest; 1997 Mar; 27(3):219-27. PubMed ID: 9088858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements.
    Hedges RE; Clement JG; Thomas CD; O'connell TC
    Am J Phys Anthropol; 2007 Jun; 133(2):808-16. PubMed ID: 17405135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of diet and beauty products on the uptake and storage of
    Johnstone-Belford EC; Jacobsen G; Fallon SJ; Dipnall JF; Blau S
    Forensic Sci Int; 2023 Aug; 349():111771. PubMed ID: 37385158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological profile of atypical femoral fractures: age-related changes to the cross-sectional geometry of the diaphysis.
    Imamura T; Tsurumoto T; Saiki K; Nishi K; Okamoto K; Manabe Y; Oyamada J; Ogami-Takamura K
    J Anat; 2019 Nov; 235(5):892-902. PubMed ID: 31355449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Bomb Pulse Dating and its Use in the Investigation of Unidentified Human Remains.
    Johnstone-Belford EC; Blau S
    J Forensic Sci; 2020 May; 65(3):676-685. PubMed ID: 31688960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone mineral density of the spine and femur in a group of healthy Moroccan men.
    El Maghraoui A; Ghazi M; Gassim S; Mounach A; Ghozlani I; Nouijai A; Achemlal L; Bezza A; Dehhaoui M
    Bone; 2009 May; 44(5):965-9. PubMed ID: 19168162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High prevalence of spine–femur bone mineral density discordance and comparison of vertebral fracture risk assessment using femoral neck and lumbar spine bone density in Korean patients.
    Seok H; Kim KJ; Kim KM; Rhee Y; Cha BS; Lim SK
    J Bone Miner Metab; 2014 Jul; 32(4):405-10. PubMed ID: 24122250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal changes in bomb radiocarbon in the northern Indian Ocean.
    Raj H; Bhushan R
    J Environ Radioact; 2021 Oct; 237():106680. PubMed ID: 34116455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of dual energy radiography measurements at the lumbar spine and proximal femur for the diagnosis of osteoporosis.
    Griffin MG; Rupich RC; Avioli LV; Pacifici R
    J Clin Endocrinol Metab; 1991 Dec; 73(6):1164-9. PubMed ID: 1955496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low bone mass density at multiple skeletal sites, including the appendicular skeleton in amenorrheic runners.
    Pettersson U; Stålnacke B; Ahlénius G; Henriksson-Larsén K; Lorentzon R
    Calcif Tissue Int; 1999 Feb; 64(2):117-25. PubMed ID: 9914318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body.
    Nawathe S; Yang H; Fields AJ; Bouxsein ML; Keaveny TM
    J Biomech; 2015 May; 48(7):1264-9. PubMed ID: 25828400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.