These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34942640)

  • 1. DFT calculation in design of near-infrared absorbing nitrogen-doped graphene quantum dots.
    Chan SC; Cheng YL; Chang BK; Hong CW
    Phys Chem Chem Phys; 2022 Jan; 24(3):1580-1589. PubMed ID: 34942640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.
    El-Shishtawy RM; Elroby SA; Asiri AM; Müllen K
    Int J Mol Sci; 2016 Apr; 17(4):487. PubMed ID: 27043556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms.
    Feng J; Dong H; Pang B; Shao F; Zhang C; Yu L; Dong L
    Phys Chem Chem Phys; 2018 Jun; 20(22):15244-15252. PubMed ID: 29789854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation of electronic and optical properties of nitrogen doped triangular shaped graphene quantum dots.
    Basak T; Basak T
    J Phys Condens Matter; 2020 Aug; 32(44):. PubMed ID: 32585650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paramagnetism in Microwave-Synthesized Metal-Free Nitrogen-Doped Graphene Quantum Dots.
    Inbanathan FPN; Cimatu KLA; Ingram DC; Erasquin UJ; Dasari K; Sultan MS; Sajjad M; Makarov V; Weiner BR; Morell G; Sharifi Abdar P; Jadwisienczak WM
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of DFT methods for molecular orbital eigenvalue calculations.
    Zhang G; Musgrave CB
    J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes.
    Kuamit T; Ratanasak M; Rungnim C; Parasuk V
    J Mol Model; 2017 Nov; 23(12):355. PubMed ID: 29177727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Mode Fluorescence/Ultrasound Imaging with Biocompatible Metal-Doped Graphene Quantum Dots.
    Valimukhametova AR; Zub OS; Lee BH; Fannon O; Nguyen S; Gonzalez-Rodriguez R; Akkaraju GR; Naumov AV
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4965-4975. PubMed ID: 36179254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Infrared-Emitting Nitrogen-Doped Nanographenes.
    Yamato K; Sekiya R; Suzuki K; Haino T
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9022-9026. PubMed ID: 31041841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation.
    Wang C; Tan R; Li J; Zhang Z
    Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of ferric ion via its effect on the enhancement of the chemiluminescece of the permanganate-sulfite system by nitrogen-doped graphene quantum dots.
    Li D; Nie F; Tang T; Tian K
    Mikrochim Acta; 2018 Aug; 185(9):431. PubMed ID: 30155793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene - a density-functional study.
    Yutomo EB; Noor FA; Winata T
    RSC Adv; 2021 May; 11(30):18371-18380. PubMed ID: 35480933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese-nitrogen and gadolinium-nitrogen Co-doped graphene quantum dots as bimodal magnetic resonance and fluorescence imaging nanoprobes.
    Lee BH; Hasan MT; Lichthardt D; Gonzalez-Rodriguez R; Naumov AV
    Nanotechnology; 2021 Feb; 32(9):095103. PubMed ID: 33126228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Studies for Electronic Structure and Optical Properties of Strontium Doped β-Ga
    Kean Ping L; Mohamed MA; Kumar Mondal A; Mohamad Taib MF; Samat MH; Berhanuddin DD; Menon PS; Bahru R
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33804978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational investigation of double nitrogen doping on graphene.
    Herath D; Dinadayalane T
    J Mol Model; 2017 Dec; 24(1):26. PubMed ID: 29273911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-Doped Graphene Quantum Dot-Passivated δ-Phase CsPbI
    Gu Y; Du X; Hua F; Wen J; Li M; Tang T
    Molecules; 2023 Oct; 28(21):. PubMed ID: 37959730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: a combined density functional theory and molecular dynamics approach.
    Vatanparast M; Shariatinia Z
    J Mater Chem B; 2019 Oct; 7(40):6156-6171. PubMed ID: 31559403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots.
    Gu S; Hsieh CT; Ashraf Gandomi Y; Li J; Yue XX; Chang JK
    Nanoscale; 2019 Sep; 11(35):16553-16561. PubMed ID: 31455955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of defects on optical and electronic properties of graphene quantum dots: a density functional theory study.
    Liu W; Han Y; Liu M; Chen L; Xu J
    RSC Adv; 2023 May; 13(24):16232-16240. PubMed ID: 37266493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-functional-theory studies of the infrared spectra of titanium carbide nanocrystals.
    Patzschke M; Sundholm D
    J Phys Chem B; 2005 Jun; 109(25):12503-8. PubMed ID: 16852546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.