These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 34942770)
1. Effects of frequency mismatch on amplitude death in delay-coupled oscillators. Mizukami S; Konishi K; Sugitani Y; Kouda T; Hara N Phys Rev E; 2021 Nov; 104(5-1):054207. PubMed ID: 34942770 [TBL] [Abstract][Full Text] [Related]
2. Delay-induced amplitude death in multiplex oscillator network with frequency-mismatched layers. Konishi K; Yoshida K; Sugitani Y; Hara N Phys Rev E; 2024 Jan; 109(1-1):014220. PubMed ID: 38366515 [TBL] [Abstract][Full Text] [Related]
3. Occasional coupling enhances amplitude death in delay-coupled oscillators. Ghosh A; Mondal S; Sujith RI Chaos; 2022 Oct; 32(10):101106. PubMed ID: 36319273 [TBL] [Abstract][Full Text] [Related]
4. Robust design against frequency variation for amplitude death in delay-coupled oscillators. Sugitani Y; Kawahara K; Konishi K Phys Rev E; 2024 Jun; 109(6-1):064213. PubMed ID: 39021037 [TBL] [Abstract][Full Text] [Related]
5. A common lag scenario in quenching of oscillation in coupled oscillators. Suresh K; Sabarathinam S; Thamilmaran K; Kurths J; Dana SK Chaos; 2016 Aug; 26(8):083104. PubMed ID: 27586600 [TBL] [Abstract][Full Text] [Related]
6. Amplitude death of identical oscillators in networks with direct coupling. Illing L Phys Rev E; 2016 Aug; 94(2-1):022215. PubMed ID: 27627306 [TBL] [Abstract][Full Text] [Related]
7. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Chaos; 2018 Mar; 28(3):033110. PubMed ID: 29604660 [TBL] [Abstract][Full Text] [Related]
8. Amplitude death in oscillator networks with variable-delay coupling. Gjurchinovski A; Zakharova A; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032915. PubMed ID: 24730921 [TBL] [Abstract][Full Text] [Related]
9. Amplitude and phase effects on the synchronization of delay-coupled oscillators. D'Huys O; Vicente R; Danckaert J; Fischer I Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097 [TBL] [Abstract][Full Text] [Related]
10. The study of amplitude death in globally delay-coupled nonidentical systems based on order parameter expansion. Yao C; Zou W; Zhao Q Chaos; 2012 Jun; 22(2):023149. PubMed ID: 22757556 [TBL] [Abstract][Full Text] [Related]
11. Amplitude and phase dynamics in oscillators with distributed-delay coupling. Kyrychko YN; Blyuss KB; Schöll E Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224 [TBL] [Abstract][Full Text] [Related]
12. Amplitude death in networks of delay-coupled delay oscillators. Höfener JM; Sethia GC; Gross T Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120462. PubMed ID: 23960220 [TBL] [Abstract][Full Text] [Related]
13. Using critical curves to compute master stability islands for amplitude death in networks of delay-coupled oscillators. Huddy SR Chaos; 2020 Jan; 30(1):013118. PubMed ID: 32013506 [TBL] [Abstract][Full Text] [Related]
14. Chimera states in two-dimensional networks of locally coupled oscillators. Kundu S; Majhi S; Bera BK; Ghosh D; Lakshmanan M Phys Rev E; 2018 Feb; 97(2-1):022201. PubMed ID: 29548198 [TBL] [Abstract][Full Text] [Related]
15. Amplitude suppression of oscillators with delay connections and slow switching topology. Iwamoto T; Sugitani Y; Masamura S; Konishi K; Hara N Phys Rev E; 2020 Sep; 102(3-1):032206. PubMed ID: 33076019 [TBL] [Abstract][Full Text] [Related]
16. Amplitude death in oscillators coupled by a one-way ring time-delay connection. Konishi K Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066201. PubMed ID: 15697478 [TBL] [Abstract][Full Text] [Related]
17. Amplitude death in a pair of one-dimensional complex Ginzburg-Landau systems coupled by diffusive connections. Teki H; Konishi K; Hara N Phys Rev E; 2017 Jun; 95(6-1):062220. PubMed ID: 28709208 [TBL] [Abstract][Full Text] [Related]
18. Partial synchronization and partial amplitude death in mesoscale network motifs. Poel W; Zakharova A; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022915. PubMed ID: 25768577 [TBL] [Abstract][Full Text] [Related]
19. Origin of amplitude synchronization in coupled nonidentical oscillators. Qiu Q; Zhou B; Wang P; He L; Xiao Y; Yang Z; Zhan M Phys Rev E; 2020 Feb; 101(2-1):022210. PubMed ID: 32168617 [TBL] [Abstract][Full Text] [Related]
20. Collective behaviors of mean-field coupled Stuart-Landau limit-cycle oscillators under additional repulsive links. Wang J; Zou W Chaos; 2021 Jul; 31(7):073107. PubMed ID: 34340324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]