These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34942782)

  • 1. Functionals of fractional Brownian motion and the three arcsine laws.
    Sadhu T; Wiese KJ
    Phys Rev E; 2021 Nov; 104(5-1):054112. PubMed ID: 34942782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized Arcsine Laws for Fractional Brownian Motion.
    Sadhu T; Delorme M; Wiese KJ
    Phys Rev Lett; 2018 Jan; 120(4):040603. PubMed ID: 29437446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbative expansion for the maximum of fractional Brownian motion.
    Delorme M; Wiese KJ
    Phys Rev E; 2016 Jul; 94(1-1):012134. PubMed ID: 27575103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme-value statistics of fractional Brownian motion bridges.
    Delorme M; Wiese KJ
    Phys Rev E; 2016 Nov; 94(5-1):052105. PubMed ID: 27967044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum of a Fractional Brownian Motion: Analytic Results from Perturbation Theory.
    Delorme M; Wiese KJ
    Phys Rev Lett; 2015 Nov; 115(21):210601. PubMed ID: 26636835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
    Ai BQ; Shao ZG; Zhong WR
    J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation theory for fractional Brownian motion in presence of absorbing boundaries.
    Wiese KJ; Majumdar SN; Rosso A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061141. PubMed ID: 21797336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme events for fractional Brownian motion with drift: Theory and numerical validation.
    Arutkin M; Walter B; Wiese KJ
    Phys Rev E; 2020 Aug; 102(2-1):022102. PubMed ID: 32942469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First passage in an interval for fractional Brownian motion.
    Wiese KJ
    Phys Rev E; 2019 Mar; 99(3-1):032106. PubMed ID: 30999514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longest excursion of fractional Brownian motion: numerical evidence of non-Markovian effects.
    García-García R; Rosso A; Schehr G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010102. PubMed ID: 20365309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution.
    Yu S; Chu R; Wu G; Meng X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion.
    Makarava N; Menz S; Theves M; Huisinga W; Beta C; Holschneider M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042703. PubMed ID: 25375519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-similar Gaussian processes for modeling anomalous diffusion.
    Lim SC; Muniandy SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021114. PubMed ID: 12241157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflected fractional Brownian motion in one and higher dimensions.
    Vojta T; Halladay S; Skinner S; Janušonis S; Guggenberger T; Metzler R
    Phys Rev E; 2020 Sep; 102(3-1):032108. PubMed ID: 33075869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying non-ergodicity of anomalous diffusion with higher order moments.
    Schwarzl M; Godec A; Metzler R
    Sci Rep; 2017 Jun; 7(1):3878. PubMed ID: 28634366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing of Multifractional Brownian Motion.
    Balcerek M; Burnecki K
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.