These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Stochastic resetting and first arrival subjected to Gaussian noise and Poisson white noise. Goswami K; Chakrabarti R Phys Rev E; 2021 Sep; 104(3-1):034113. PubMed ID: 34654068 [TBL] [Abstract][Full Text] [Related]
4. Noise-induced escape of periodically modulated systems: from weak to strong modulation. Ryvkine D; Dykman MI Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011110. PubMed ID: 16089940 [TBL] [Abstract][Full Text] [Related]
5. An optimal control method to compute the most likely transition path for stochastic dynamical systems with jumps. Wei W; Gao T; Chen X; Duan J Chaos; 2022 May; 32(5):051102. PubMed ID: 35649976 [TBL] [Abstract][Full Text] [Related]
6. Quantum stochastic dynamics in the presence of a time-periodic rapidly oscillating potential: nonadiabatic escape rate. Shit A; Chattopadhyay S; Chaudhuri JR J Phys Chem A; 2013 Sep; 117(36):8576-90. PubMed ID: 23627350 [TBL] [Abstract][Full Text] [Related]
7. Unstable decay and state selection. McKane A; Tarlie M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026116. PubMed ID: 11497660 [TBL] [Abstract][Full Text] [Related]
8. Time crystal dynamics in a weakly modulated stochastic time delayed system. Tiana-Alsina J; Masoller C Sci Rep; 2022 Mar; 12(1):4914. PubMed ID: 35318359 [TBL] [Abstract][Full Text] [Related]
10. Time-delayed Duffing oscillator in an active bath. Valido AA; Coccolo M; Sanjuán MAF Phys Rev E; 2023 Dec; 108(6-1):064205. PubMed ID: 38243436 [TBL] [Abstract][Full Text] [Related]
11. Control of stochastic and inverse stochastic resonances in a liquid-crystal electroconvection system using amplitude and phase noises. Huh JH; Shiomi M; Miyagawa N Sci Rep; 2023 Oct; 13(1):16883. PubMed ID: 37803168 [TBL] [Abstract][Full Text] [Related]
12. Stochastic and superharmonic stochastic resonances of a confined overdamped harmonic oscillator. Zhang L; Lai L; Peng H; Tu Z; Zhong S Phys Rev E; 2018 Jan; 97(1-1):012147. PubMed ID: 29448483 [TBL] [Abstract][Full Text] [Related]
13. Optimal transition paths of stochastic chemical kinetic systems. Liu D J Chem Phys; 2006 Apr; 124(16):164104. PubMed ID: 16674126 [TBL] [Abstract][Full Text] [Related]
14. Two paradigmatic scenarios for inverse stochastic resonance. Bačić I; Franović I Chaos; 2020 Mar; 30(3):033123. PubMed ID: 32237779 [TBL] [Abstract][Full Text] [Related]
15. The Switch in a Genetic Toggle System with Lévy Noise. Xu Y; Li Y; Zhang H; Li X; Kurths J Sci Rep; 2016 Aug; 6():31505. PubMed ID: 27539010 [TBL] [Abstract][Full Text] [Related]
16. Phase diffusion as a model for coherent suppression of tunneling in the presence of noise. Grondalski J; Alsing PM; Deutsch IH Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016114. PubMed ID: 11304321 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of a metastable state nonlinearly coupled to a heat bath driven by external noise. Chaudhuri JR; Barik D; Banik SK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061119. PubMed ID: 17280050 [TBL] [Abstract][Full Text] [Related]
18. Numerical method for solving stochastic differential equations with Poissonian white shot noise. Kim C; Lee EK; Hänggi P; Talkner P Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011109. PubMed ID: 17677412 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of a stochastic oscillator in an excitable chemical reaction system. Miyakawa K; Tanaka T; Isikawa H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066206. PubMed ID: 16241325 [TBL] [Abstract][Full Text] [Related]
20. Resonances and noise in a stochastic Hindmarsh-Rose model of thalamic neurons. Reinker S; Puil E; Miura RM Bull Math Biol; 2003 Jul; 65(4):641-63. PubMed ID: 12875337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]