These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 34942811)
1. Contrariety and inhibition enhance synchronization in a small-world network of phase oscillators. Nikfard T; Tabatabaei YH; Shahbazi F Phys Rev E; 2021 Nov; 104(5-1):054213. PubMed ID: 34942811 [TBL] [Abstract][Full Text] [Related]
2. An efficient approach to suppress the negative role of contrarian oscillators in synchronization. Zhang X; Ruan Z; Liu Z Chaos; 2013 Sep; 23(3):033135. PubMed ID: 24089971 [TBL] [Abstract][Full Text] [Related]
3. Characterizing nonstationary coherent states in globally coupled conformist and contrarian oscillators. Qiu T; Boccaletti S; Liu Z; Guan S Phys Rev E; 2019 Nov; 100(5-1):052310. PubMed ID: 31870024 [TBL] [Abstract][Full Text] [Related]
4. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. Hong H; Strogatz SH Phys Rev Lett; 2011 Feb; 106(5):054102. PubMed ID: 21405399 [TBL] [Abstract][Full Text] [Related]
5. Binary mixtures of locally coupled mobile oscillators. Paulo G; Tasinkevych M Phys Rev E; 2021 Jul; 104(1-1):014204. PubMed ID: 34412317 [TBL] [Abstract][Full Text] [Related]
6. Landau damping effects in the synchronization of conformist and contrarian oscillators. Qiu T; Zhang Y; Liu J; Bi H; Boccaletti S; Liu Z; Guan S Sci Rep; 2015 Dec; 5():18235. PubMed ID: 26657060 [TBL] [Abstract][Full Text] [Related]
7. Periodic synchronization and chimera in conformist and contrarian oscillators. Hong H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062924. PubMed ID: 25019868 [TBL] [Abstract][Full Text] [Related]
8. Bifurcations in models of a society of reasonable contrarians and conformists. Bagnoli F; Rechtman R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042913. PubMed ID: 26565310 [TBL] [Abstract][Full Text] [Related]
9. Conformists and contrarians in a Kuramoto model with identical natural frequencies. Hong H; Strogatz SH Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046202. PubMed ID: 22181240 [TBL] [Abstract][Full Text] [Related]
10. Phase transition in a coevolving network of conformist and contrarian voters. Yi SD; Baek SK; Zhu CP; Kim BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012806. PubMed ID: 23410387 [TBL] [Abstract][Full Text] [Related]
11. Synchronization and Bellerophon states in conformist and contrarian oscillators. Qiu T; Boccaletti S; Bonamassa I; Zou Y; Zhou J; Liu Z; Guan S Sci Rep; 2016 Nov; 6():36713. PubMed ID: 27827411 [TBL] [Abstract][Full Text] [Related]
12. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
13. Voter models with contrarian agents. Masuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052803. PubMed ID: 24329314 [TBL] [Abstract][Full Text] [Related]
14. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators. Papadopoulos L; Kim JZ; Kurths J; Bassett DS Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402 [TBL] [Abstract][Full Text] [Related]
15. Noise-induced synchronization in small world networks of phase oscillators. Esfahani RK; Shahbazi F; Samani KA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036204. PubMed ID: 23030994 [TBL] [Abstract][Full Text] [Related]
16. Perturbation analysis of complete synchronization in networks of phase oscillators. Tönjes R; Blasius B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226 [TBL] [Abstract][Full Text] [Related]
17. Optimal global synchronization of partially forced Kuramoto oscillators. Climaco JS; Saa A Chaos; 2019 Jul; 29(7):073115. PubMed ID: 31370401 [TBL] [Abstract][Full Text] [Related]
18. Synchronization onset for contrarians with higher-order interactions in multilayer systems. Rathore V; Suman A; Jalan S Chaos; 2023 Sep; 33(9):. PubMed ID: 37729103 [TBL] [Abstract][Full Text] [Related]
19. Topological bifurcations in a model society of reasonable contrarians. Bagnoli F; Rechtman R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062914. PubMed ID: 24483538 [TBL] [Abstract][Full Text] [Related]
20. Multistable states in a system of coupled phase oscillators with inertia. Yuan D; Lin F; Wang L; Liu D; Yang J; Xiao Y Sci Rep; 2017 Feb; 7():42178. PubMed ID: 28176829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]