BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 34943051)

  • 41. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection.
    Munemasa Y; Kitaoka Y
    Front Cell Neurosci; 2012; 6():60. PubMed ID: 23316132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension.
    Vidal-Sanz M; Galindo-Romero C; Valiente-Soriano FJ; Nadal-Nicolás FM; Ortin-Martinez A; Rovere G; Salinas-Navarro M; Lucas-Ruiz F; Sanchez-Migallon MC; Sobrado-Calvo P; Aviles-Trigueros M; Villegas-Pérez MP; Agudo-Barriuso M
    Front Neurosci; 2017; 11():235. PubMed ID: 28491019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Severe, early axonal degeneration following experimental anterior ischemic optic neuropathy.
    Lee GH; Stanford MP; Shariati MA; Ma JH; Liao YJ
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(11):7111-8. PubMed ID: 25249599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of hypoxia-inducible factor-1α in preconditioning-induced protection of retinal ganglion cells in glaucoma.
    Zhu Y; Zhang L; Gidday JM
    Mol Vis; 2013; 19():2360-72. PubMed ID: 24319330
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis.
    Larabee CM; Desai S; Agasing A; Georgescu C; Wren JD; Axtell RC; Plafker SM
    Mol Vis; 2016; 22():1503-1513. PubMed ID: 28050123
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optic neuropathy associated with TGFβ dysregulation in mice with a glaucoma-causative mutation of ADAMTS10.
    Wu HJ; Kuchtey RW; Kuchtey J
    Matrix Biol; 2022 Nov; 113():83-99. PubMed ID: 36216203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual Specific Phosphatase 14 Deletion Rescues Retinal Ganglion Cells and Optic Nerve Axons after Experimental Anterior Ischemic Optic Neuropathy.
    Kumar V; Ali Shariati M; Mesentier-Louro L; Jinsook Oh A; Russano K; Goldberg JL; Liao YJ
    Curr Eye Res; 2021 May; 46(5):710-718. PubMed ID: 33107352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A freely available semi-automated method for quantifying retinal ganglion cells in entire retinal flatmounts.
    Geeraerts E; Dekeyster E; Gaublomme D; Salinas-Navarro M; De Groef L; Moons L
    Exp Eye Res; 2016 Jun; 147():105-113. PubMed ID: 27107795
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Establishing the ground squirrel as a superb model for retinal ganglion cell disorders and optic neuropathies.
    Xiao X; Zhao T; Miyagishima KJ; Chen S; Li W; Nadal-Nicolás FM
    Lab Invest; 2021 Sep; 101(9):1289-1303. PubMed ID: 34253851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The optic nerve: a "mito-window" on mitochondrial neurodegeneration.
    Maresca A; la Morgia C; Caporali L; Valentino ML; Carelli V
    Mol Cell Neurosci; 2013 Jul; 55(100):62-76. PubMed ID: 22960139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.
    Lopez Sanchez MI; Crowston JG; Mackey DA; Trounce IA
    Pharmacol Ther; 2016 Sep; 165():132-52. PubMed ID: 27288727
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration.
    Salinas-Navarro M; Alarcón-Martínez L; Valiente-Soriano FJ; Jiménez-López M; Mayor-Torroglosa S; Avilés-Trigueros M; Villegas-Pérez MP; Vidal-Sanz M
    Exp Eye Res; 2010 Jan; 90(1):168-83. PubMed ID: 19835874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased bioavailability of cyclic guanylate monophosphate prevents retinal ganglion cell degeneration.
    Wareham LK; Dordea AC; Schleifer G; Yao V; Batten A; Fei F; Mertz J; Gregory-Ksander M; Pasquale LR; Buys ES; Sappington RM
    Neurobiol Dis; 2019 Jan; 121():65-75. PubMed ID: 30213732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Schwann cell-derived extracellular vesicles as a potential therapy for retinal ganglion cell degeneration.
    Zhu S; Chen L; Wang M; Zhang J; Chen G; Yao Y; Song S; Li T; Xu S; Yu Z; Shen B; Xu D; Chi ZL; Wu W
    J Control Release; 2023 Nov; 363():641-656. PubMed ID: 37820984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Loss of
    Ueki Y; Ramirez G; Salcedo E; Stabio ME; Lefcort F
    eNeuro; 2016; 3(5):. PubMed ID: 27699209
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell-Specific Expression of Human SIRT1 by Gene Therapy Reduces Retinal Ganglion Cell Loss Induced by Elevated Intraocular Pressure.
    Yue J; Khan RS; Duong TT; Dine KE; Cui QN; O'Neill N; Aravand P; Liu T; Chaqour B; Shindler KS; Ross AG
    Neurotherapeutics; 2023 Apr; 20(3):896-907. PubMed ID: 36941497
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells.
    Ju WK; Perkins GA; Kim KY; Bastola T; Choi WY; Choi SH
    Prog Retin Eye Res; 2023 Jul; 95():101136. PubMed ID: 36400670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Piezo1 and Piezo2 channels in retinal ganglion cells and the impact of Piezo1 stimulation on light-dependent neural activity.
    Sripinun P; See LP; Nikonov S; Chavali VRM; Vrathasha V; He J; O'Brien JM; Xia J; Lu W; Mitchell CH
    bioRxiv; 2024 Jun; ():. PubMed ID: 38979351
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Natural compounds and retinal ganglion cell neuroprotection.
    Morrone LA; Rombolà L; Corasaniti MT; Bagetta G; Nucci C; Russo R
    Prog Brain Res; 2015; 220():257-81. PubMed ID: 26497795
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss.
    You Y; Gupta VK; Li JC; Klistorner A; Graham SL
    Rev Neurosci; 2013; 24(3):301-21. PubMed ID: 23612594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.