These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 34943124)
1. NAD(P)H Drives the Ascorbate-Glutathione Cycle and Abundance of Catalase in Developing Beech Seeds Differently in Embryonic Axes and Cotyledons. Kalemba EM; Alipour S; Wojciechowska N Antioxidants (Basel); 2021 Dec; 10(12):. PubMed ID: 34943124 [TBL] [Abstract][Full Text] [Related]
2. Nicotinamide adenine dinucleotides are associated with distinct redox control of germination in Acer seeds with contrasting physiology. Alipour S; Bilska K; Stolarska E; Wojciechowska N; Kalemba EM PLoS One; 2021; 16(1):e0245635. PubMed ID: 33503034 [TBL] [Abstract][Full Text] [Related]
3. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Pellny TK; Locato V; Vivancos PD; Markovic J; De Gara L; Pallardó FV; Foyer CH Mol Plant; 2009 May; 2(3):442-56. PubMed ID: 19825628 [TBL] [Abstract][Full Text] [Related]
4. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984 [TBL] [Abstract][Full Text] [Related]
5. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. Pukacka S; Ratajczak E J Plant Physiol; 2006 Dec; 163(12):1259-66. PubMed ID: 17126729 [TBL] [Abstract][Full Text] [Related]
6. Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. Pukacka S; Ratajczak E J Plant Physiol; 2005 Aug; 162(8):873-85. PubMed ID: 16146313 [TBL] [Abstract][Full Text] [Related]
7. The solute carrier SLC25A17 sustains peroxisomal redox homeostasis in diverse mammalian cell lines. Costa CF; Lismont C; Chornyi S; Koster J; Li H; Hussein MAF; Van Veldhoven PP; Waterham HR; Fransen M Free Radic Biol Med; 2024 Feb; 212():241-254. PubMed ID: 38159891 [TBL] [Abstract][Full Text] [Related]
8. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development. Queval G; Noctor G Anal Biochem; 2007 Apr; 363(1):58-69. PubMed ID: 17288982 [TBL] [Abstract][Full Text] [Related]
9. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors. Lu W; Wang L; Chen L; Hui S; Rabinowitz JD Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978 [TBL] [Abstract][Full Text] [Related]
10. NAD(P)-Driven Redox Status Contributes to Desiccation Tolerance in Acer seeds. Alipour S; Wojciechowska N; Stolarska E; Bilska K; Kalemba EM Plant Cell Physiol; 2020 Jun; 61(6):1158-1167. PubMed ID: 32267948 [TBL] [Abstract][Full Text] [Related]
11. The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. Ratajczak E; Małecka A; Bagniewska-Zadworna A; Kalemba EM J Plant Physiol; 2015 Feb; 174():147-56. PubMed ID: 25462977 [TBL] [Abstract][Full Text] [Related]
12. Analyzing the Function of Catalase and the Ascorbate-Glutathione Pathway in H Tuzet A; Rahantaniaina MS; Noctor G Antioxid Redox Signal; 2019 Mar; 30(9):1238-1268. PubMed ID: 30044135 [TBL] [Abstract][Full Text] [Related]
14. Adenylate and nicotinamide nucleotides in developing soybean seeds during seed-fill. Quebedeaux B Plant Physiol; 1981 Jul; 68(1):23-7. PubMed ID: 16661875 [TBL] [Abstract][Full Text] [Related]
15. Integration of MsrB1 and MsrB2 in the Redox Network during the Development of Orthodox and Recalcitrant Stolarska E; Bilska K; Wojciechowska N; Bagniewska-Zadworna A; Rey P; Kalemba EM Antioxidants (Basel); 2020 Dec; 9(12):. PubMed ID: 33316974 [TBL] [Abstract][Full Text] [Related]
16. Single-sample preparation for simultaneous cellular redox and energy state determination. Lazzarino G; Amorini AM; Fazzina G; Vagnozzi R; Signoretti S; Donzelli S; Di Stasio E; Giardina B; Tavazzi B Anal Biochem; 2003 Nov; 322(1):51-9. PubMed ID: 14705780 [TBL] [Abstract][Full Text] [Related]
17. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Obrosova IG; Stevens MJ Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971 [TBL] [Abstract][Full Text] [Related]
18. High fructose-containing drinking water-induced steatohepatitis in rats is prevented by the nicotinamide-mediated modulation of redox homeostasis and NADPH-producing enzymes. Loza-Medrano SS; Baiza-Gutman LA; Manuel-Apolinar L; García-Macedo R; Damasio-Santana L; Martínez-Mar OA; Sánchez-Becerra MC; Cruz-López M; Ibáñez-Hernández MA; Díaz-Flores M Mol Biol Rep; 2020 Jan; 47(1):337-351. PubMed ID: 31650383 [TBL] [Abstract][Full Text] [Related]
19. Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons. Parihar MS; Kunz EA; Brewer GJ J Neurosci Res; 2008 Aug; 86(10):2339-52. PubMed ID: 18438923 [TBL] [Abstract][Full Text] [Related]
20. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells. Circu ML; Maloney RE; Aw TY Antioxid Redox Signal; 2011 Jun; 14(11):2151-62. PubMed ID: 21083422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]