These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 34943124)
21. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293. Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815 [No Abstract] [Full Text] [Related]
22. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle. Bashri G; Prasad SM Ecotoxicol Environ Saf; 2016 Oct; 132():329-38. PubMed ID: 27344401 [TBL] [Abstract][Full Text] [Related]
23. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons. Ghosh D; Levault KR; Brewer GJ Aging Cell; 2014 Aug; 13(4):631-40. PubMed ID: 24655393 [TBL] [Abstract][Full Text] [Related]
24. Distinct redox state regulation in the seedling performance of Norway maple and sycamore. Alipour S; Wojciechowska N; Bujarska-Borkowska B; Kalemba EM J Plant Res; 2023 Jan; 136(1):83-96. PubMed ID: 36385674 [TBL] [Abstract][Full Text] [Related]
25. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. Tommasi F; Paciolla C; de Pinto MC; De Gara L J Exp Bot; 2001 Aug; 52(361):1647-54. PubMed ID: 11479329 [TBL] [Abstract][Full Text] [Related]
26. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds. Ding Y; Cheng H; Song S Sci China C Life Sci; 2008 Sep; 51(9):842-53. PubMed ID: 18726532 [TBL] [Abstract][Full Text] [Related]
27. Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Bradshaw PC Nutrients; 2019 Feb; 11(3):. PubMed ID: 30818813 [TBL] [Abstract][Full Text] [Related]
29. Elevated peroxidative glutathione redox status in atherosclerotic patients with increased thickness of carotid intima media. Huang YS; Wang LX; Sun L; Wu Y; Lu JM; Zhao SC; Dai FM; Xu BS; Wang SR Chin Med J (Engl); 2009 Dec; 122(23):2827-32. PubMed ID: 20092785 [TBL] [Abstract][Full Text] [Related]
30. Cold stratification-induced dormancy removal in apple (Malus domestica Borkh.) seeds is accompanied by an increased glutathione pool in embryonic axes. Ciacka K; Tyminski M; Gniazdowska A; Krasuska U J Plant Physiol; 2022 Jul; 274():153736. PubMed ID: 35661472 [TBL] [Abstract][Full Text] [Related]
31. Ascorbate-Mediated Modulation of Cadmium Stress Responses: Reactive Oxygen Species and Redox Status in Jung HI; Lee BR; Chae MJ; Lee EJ; Lee TG; Jung GB; Kim MS; Lee J Front Plant Sci; 2020; 11():586547. PubMed ID: 33329648 [TBL] [Abstract][Full Text] [Related]
32. New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage. Ceconi C; Bernocchi P; Boraso A; Cargnoni A; Pepi P; Curello S; Ferrari R Cardiovasc Res; 2000 Aug; 47(3):586-94. PubMed ID: 10963731 [TBL] [Abstract][Full Text] [Related]
33. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Valderrama R; Corpas FJ; Carreras A; Gómez-Rodríguez MV; Chaki M; Pedrajas JR; Fernández-Ocaña A; Del Río LA; Barroso JB Plant Cell Environ; 2006 Jul; 29(7):1449-59. PubMed ID: 17080966 [TBL] [Abstract][Full Text] [Related]
34. Influence of GSH synthesis inhibition on temporal distribution of NAD+/NADH during vascular endothelial cells proliferation. Busu C; Atanasiu V; Caldito G; Aw TY J Med Life; 2014; 7(4):611-8. PubMed ID: 25713632 [TBL] [Abstract][Full Text] [Related]
35. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Xiao W; Wang RS; Handy DE; Loscalzo J Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096 [TBL] [Abstract][Full Text] [Related]
36. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line. Wise DD; Shear JB Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639 [TBL] [Abstract][Full Text] [Related]
37. Alterations on Cellular Redox States upon Infection and Implications for Host Cell Homeostasis. Mesquita I; Vergnes B; Silvestre R Exp Suppl; 2018; 109():197-220. PubMed ID: 30535600 [TBL] [Abstract][Full Text] [Related]
38. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress. Saruhan N; Terzi R; Saglam A; Kadioglu A Biol Res; 2009; 42(3):315-26. PubMed ID: 19915740 [TBL] [Abstract][Full Text] [Related]
39. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Koju N; Qin ZH; Sheng R Acta Pharmacol Sin; 2022 Aug; 43(8):1889-1904. PubMed ID: 35017669 [TBL] [Abstract][Full Text] [Related]
40. Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed. Yin G; Xin X; Song C; Chen X; Zhang J; Wu S; Li R; Liu X; Lu X Plant Physiol Biochem; 2014 Jul; 80():1-9. PubMed ID: 24705135 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]