These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34943915)

  • 1. Phosphoproteomics Sample Preparation Impacts Biological Interpretation of Phosphorylation Signaling Outcomes.
    Sampadi B; Mullenders LHF; Vrieling H
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative phosphoproteomics of CXCL12 (SDF-1) signaling.
    Wojcechowskyj JA; Lee JY; Seeholzer SH; Doms RW
    PLoS One; 2011; 6(9):e24918. PubMed ID: 21949786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics.
    Ray BN; Kweon HK; Argetsinger LS; Fingar DC; Andrews PC; Carter-Su C
    Mol Endocrinol; 2012 Jun; 26(6):1056-73. PubMed ID: 22570334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative phosphoproteomics using acetone-based peptide labeling: method evaluation and application to a cardiac ischemia/reperfusion model.
    Wijeratne AB; Manning JR; Schultz Jel J; Greis KD
    J Proteome Res; 2013 Oct; 12(10):4268-79. PubMed ID: 24016359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global and Site-Specific Effect of Phosphorylation on Protein Turnover.
    Wu C; Ba Q; Lu D; Li W; Salovska B; Hou P; Mueller T; Rosenberger G; Gao E; Di Y; Zhou H; Fornasiero EF; Liu Y
    Dev Cell; 2021 Jan; 56(1):111-124.e6. PubMed ID: 33238149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics.
    Golkowski M; Shimizu-Albergine M; Suh HW; Beavo JA; Ong SE
    Cell Signal; 2016 Jul; 28(7):764-78. PubMed ID: 26643407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative proteome and phosphoproteome analysis of human pluripotent stem cells.
    Muñoz J; Heck AJ
    Methods Mol Biol; 2011; 767():297-312. PubMed ID: 21822884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants.
    Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL
    J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low and high doses of ionizing radiation evoke discrete global (phospho)proteome responses.
    Sampadi B; Mullenders LHF; Vrieling H
    DNA Repair (Amst); 2022 May; 113():103305. PubMed ID: 35255311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.
    Alli-Shaik A; Wee S; Lim LHK; Gunaratne J
    Breast Cancer Res; 2017 Dec; 19(1):132. PubMed ID: 29233185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of SILAC and mTRAQ quantification for phosphoproteomics on a quadrupole orbitrap mass spectrometer.
    Oppermann FS; Klammer M; Bobe C; Cox J; Schaab C; Tebbe A; Daub H
    J Proteome Res; 2013 Sep; 12(9):4089-100. PubMed ID: 23898821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation.
    Guo M; Huang BX
    Proteomics; 2013 Feb; 13(3-4):424-37. PubMed ID: 23125184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.
    Wang S; Li Z; Shen H; Zhang Z; Yin Y; Wang Q; Zhao X; Ji J
    Stem Cells; 2016 Aug; 34(8):2090-101. PubMed ID: 27097102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB; Mäusbacher N; Soroka J; Wandinger SK; Buchner J; Daub H
    J Proteome Res; 2012 Apr; 11(4):2397-408. PubMed ID: 22369663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Phosphosites to Kinases.
    Munk S; Refsgaard JC; Olsen JV; Jensen LJ
    Methods Mol Biol; 2016; 1355():307-21. PubMed ID: 26584935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated proteomics and phosphoproteomics profiling reveals the cardioprotective mechanism of bioactive compounds derived from Salvia miltiorrhiza Burge.
    Duan S; Zhang M; Zeng H; Song J; Zhang M; Gao S; Yang H; Ding M; Li P
    Phytomedicine; 2023 Aug; 117():154897. PubMed ID: 37307738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. µPhos: a scalable and sensitive platform for high-dimensional phosphoproteomics.
    Oliinyk D; Will A; Schneidmadel FR; Böhme M; Rinke J; Hochhaus A; Ernst T; Hahn N; Geis C; Lubeck M; Raether O; Humphrey SJ; Meier F
    Mol Syst Biol; 2024 Aug; 20(8):972-995. PubMed ID: 38907068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample Collection Method Bias Effects in Quantitative Phosphoproteomics.
    Kanshin E; Tyers M; Thibault P
    J Proteome Res; 2015 Jul; 14(7):2998-3004. PubMed ID: 26040406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.
    Yang F; Waters KM; Miller JH; Gritsenko MA; Zhao R; Du X; Livesay EA; Purvine SO; Monroe ME; Wang Y; Camp DG; Smith RD; Stenoien DL
    PLoS One; 2010 Nov; 5(11):e14152. PubMed ID: 21152398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating experimental bias and completeness in comparative phosphoproteomics analysis.
    Boekhorst J; Boersema PJ; Tops BB; van Breukelen B; Heck AJ; Snel B
    PLoS One; 2011; 6(8):e23276. PubMed ID: 21853102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.