These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34943927)

  • 41. Induced pluripotent stem cells for treating cystic fibrosis: State of the science.
    Pollard BS; Pollard HB
    Pediatr Pulmonol; 2018 Nov; 53(S3):S12-S29. PubMed ID: 30062693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. OrgaSegment: deep-learning based organoid segmentation to quantify CFTR dependent fluid secretion.
    Lefferts JW; Kroes S; Smith MB; Niemöller PJ; Nieuwenhuijze NDA; Sonneveld van Kooten HN; van der Ent CK; Beekman JM; van Beuningen SFB
    Commun Biol; 2024 Mar; 7(1):319. PubMed ID: 38480810
    [TBL] [Abstract][Full Text] [Related]  

  • 43. rAAV-CFTRΔR Rescues the Cystic Fibrosis Phenotype in Human Intestinal Organoids and Cystic Fibrosis Mice.
    Vidović D; Carlon MS; da Cunha MF; Dekkers JF; Hollenhorst MI; Bijvelds MJ; Ramalho AS; Van den Haute C; Ferrante M; Baekelandt V; Janssens HM; De Boeck K; Sermet-Gaudelus I; de Jonge HR; Gijsbers R; Beekman JM; Edelman A; Debyser Z
    Am J Respir Crit Care Med; 2016 Feb; 193(3):288-98. PubMed ID: 26509335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pharmacological analysis of CFTR variants of cystic fibrosis using stem cell-derived organoids.
    Chen KG; Zhong P; Zheng W; Beekman JM
    Drug Discov Today; 2019 Nov; 24(11):2126-2138. PubMed ID: 31173911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Augmentation of Cystic Fibrosis Transmembrane Conductance Regulator Function in Human Bronchial Epithelial Cells via SLC6A14-Dependent Amino Acid Uptake. Implications for Treatment of Cystic Fibrosis.
    Ahmadi S; Wu YS; Li M; Ip W; Lloyd-Kuzik A; Di Paola M; Du K; Xia S; Lew A; Bozoky Z; Forman-Kay J; Bear CE; Gonska T
    Am J Respir Cell Mol Biol; 2019 Dec; 61(6):755-764. PubMed ID: 31189070
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane trafficking of the cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator, tagged with green fluorescent protein in madin-darby canine kidney cells.
    Moyer BD; Loffing J; Schwiebert EM; Loffing-Cueni D; Halpin PA; Karlson KH; Ismailov II; Guggino WB; Langford GM; Stanton BA
    J Biol Chem; 1998 Aug; 273(34):21759-68. PubMed ID: 9705313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of alveolar epithelial sodium channel activity with decreased cystic fibrosis transmembrane conductance regulator expression in mouse lung.
    Lazrak A; Jurkuvenaite A; Chen L; Keeling KM; Collawn JF; Bedwell DM; Matalon S
    Am J Physiol Lung Cell Mol Physiol; 2011 Oct; 301(4):L557-67. PubMed ID: 21743028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling.
    Hohwieler M; Illing A; Hermann PC; Mayer T; Stockmann M; Perkhofer L; Eiseler T; Antony JS; Müller M; Renz S; Kuo CC; Lin Q; Sendler M; Breunig M; Kleiderman SM; Lechel A; Zenker M; Leichsenring M; Rosendahl J; Zenke M; Sainz B; Mayerle J; Costa IG; Seufferlein T; Kormann M; Wagner M; Liebau S; Kleger A
    Gut; 2017 Mar; 66(3):473-486. PubMed ID: 27633923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increased apical Na+ permeability in cystic fibrosis is supported by a quantitative model of epithelial ion transport.
    O'Donoghue DL; Dua V; Moss GW; Vergani P
    J Physiol; 2013 Aug; 591(15):3681-92. PubMed ID: 23732645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis.
    Dekkers JF; Berkers G; Kruisselbrink E; Vonk A; de Jonge HR; Janssens HM; Bronsveld I; van de Graaf EA; Nieuwenhuis EE; Houwen RH; Vleggaar FP; Escher JC; de Rijke YB; Majoor CJ; Heijerman HG; de Winter-de Groot KM; Clevers H; van der Ent CK; Beekman JM
    Sci Transl Med; 2016 Jun; 8(344):344ra84. PubMed ID: 27334259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of ex vivo and in vitro intestinal cystic fibrosis models to measure CFTR-dependent ion channel activity.
    Zomer-van Ommen DD; de Poel E; Kruisselbrink E; Oppelaar H; Vonk AM; Janssens HM; van der Ent CK; Hagemeijer MC; Beekman JM
    J Cyst Fibros; 2018 May; 17(3):316-324. PubMed ID: 29544685
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Homogeneous Cell-Based Halide-Sensitive Yellow Fluorescence Protein Assay to Identify Modulators of the Cystic Fibrosis Transmembrane Conductance Regulator Ion Channel.
    Smith E; Giuliano KA; Shumate J; Baillargeon P; McEwan B; Cullen MD; Miller JP; Drew L; Scampavia L; Spicer TP
    Assay Drug Dev Technol; 2017 Dec; 15(8):395-406. PubMed ID: 29172645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel.
    Ji HL; Chalfant ML; Jovov B; Lockhart JP; Parker SB; Fuller CM; Stanton BA; Benos DJ
    J Biol Chem; 2000 Sep; 275(36):27947-56. PubMed ID: 10821834
    [TBL] [Abstract][Full Text] [Related]  

  • 54. R560S: A class II CFTR mutation that is not rescued by current modulators.
    Awatade NT; Ramalho S; Silva IAL; Felício V; Botelho HM; de Poel E; Vonk A; Beekman JM; Farinha CM; Amaral MD
    J Cyst Fibros; 2019 Mar; 18(2):182-189. PubMed ID: 30030066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel.
    Nagel G; Szellas T; Riordan JR; Friedrich T; Hartung K
    EMBO Rep; 2001 Mar; 2(3):249-54. PubMed ID: 11266369
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator.
    Kunzelmann K; Schreiber R; Nitschke R; Mall M
    Pflugers Arch; 2000 Jun; 440(2):193-201. PubMed ID: 10898518
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Establishment and characterization of a novel polarized MDCK epithelial cellular model for CFTR studies.
    Mendes F; Wakefield J; Bachhuber T; Barroso M; Bebok Z; Penque D; Kunzelmann K; Amaral MD
    Cell Physiol Biochem; 2005; 16(4-6):281-90. PubMed ID: 16301828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.
    Rowe SM; Liu B; Hill A; Hathorne H; Cohen M; Beamer JR; Accurso FJ; Dong Q; Ordoñez CL; Stone AJ; Olson ER; Clancy JP;
    PLoS One; 2013; 8(7):e66955. PubMed ID: 23922647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes.
    Yan W; Samaha FF; Ramkumar M; Kleyman TR; Rubenstein RC
    J Biol Chem; 2004 May; 279(22):23183-92. PubMed ID: 15047694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular proximity of cystic fibrosis transmembrane conductance regulator and epithelial sodium channel assessed by fluorescence resonance energy transfer.
    Berdiev BK; Cormet-Boyaka E; Tousson A; Qadri YJ; Oosterveld-Hut HM; Hong JS; Gonzales PA; Fuller CM; Sorscher EJ; Lukacs GL; Benos DJ
    J Biol Chem; 2007 Dec; 282(50):36481-8. PubMed ID: 17913705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.