BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 34943973)

  • 1. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity.
    Maik-Rachline G; Wortzel I; Seger R
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade.
    Shaul YD; Gibor G; Plotnikov A; Seger R
    Genes Dev; 2009 Aug; 23(15):1779-90. PubMed ID: 19651986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERK1c regulates Golgi fragmentation during mitosis.
    Shaul YD; Seger R
    J Cell Biol; 2006 Mar; 172(6):885-97. PubMed ID: 16533948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions.
    Keshet Y; Seger R
    Methods Mol Biol; 2010; 661():3-38. PubMed ID: 20811974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular signal-regulated kinase 1c (ERK1c), a novel 42-kilodalton ERK, demonstrates unique modes of regulation, localization, and function.
    Aebersold DM; Shaul YD; Yung Y; Yarom N; Yao Z; Hanoch T; Seger R
    Mol Cell Biol; 2004 Nov; 24(22):10000-15. PubMed ID: 15509801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytokine-specific activation of distinct mitogen-activated protein kinase subtype cascades in human neutrophils stimulated by granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-alpha.
    Suzuki K; Hino M; Hato F; Tatsumi N; Kitagawa S
    Blood; 1999 Jan; 93(1):341-9. PubMed ID: 9864179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitotic Golgi translocation of ERK1c is mediated by a PI4KIIIβ-14-3-3γ shuttling complex.
    Wortzel I; Hanoch T; Porat Z; Hausser A; Seger R
    J Cell Sci; 2015 Nov; 128(22):4083-95. PubMed ID: 26459638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the MAPK Cascade and its Relationship with Nitrogen Metabolism in the Green Alga
    Gomez-Osuna A; Calatrava V; Galvan A; Fernandez E; Llamas A
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32408549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions.
    Shen CP; Tsimberg Y; Salvadore C; Meller E
    BMC Neurosci; 2004 Sep; 5():36. PubMed ID: 15380027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitogen-activated protein kinase (MAPK)-docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo.
    Grewal S; Molina DM; Bardwell L
    Cell Signal; 2006 Jan; 18(1):123-34. PubMed ID: 15979847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways.
    Takekawa M; Maeda T; Saito H
    EMBO J; 1998 Aug; 17(16):4744-52. PubMed ID: 9707433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of MAPK cascades by insulin and osmotic shock: lack of an involvement of p38 mitogen-activated protein kinase in glucose transport in 3T3-L1 adipocytes.
    Kayali AG; Austin DA; Webster NJ
    Diabetes; 2000 Nov; 49(11):1783-93. PubMed ID: 11078444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases.
    Zheng CF; Guan KL
    J Biol Chem; 1993 Nov; 268(32):23933-9. PubMed ID: 8226933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis.
    Acharya U; Mallabiabarrena A; Acharya JK; Malhotra V
    Cell; 1998 Jan; 92(2):183-92. PubMed ID: 9458043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases.
    Cardinale F; Meskiene I; Ouaked F; Hirt H
    Plant Cell; 2002 Mar; 14(3):703-11. PubMed ID: 11910015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of mitogen-activated protein kinases in influenza virus induction of prostaglandin E2 from arachidonic acid in bronchial epithelial cells.
    Mizumura K; Hashimoto S; Maruoka S; Gon Y; Kitamura N; Matsumoto K; Hayashi S; Shimizu K; Horie T
    Clin Exp Allergy; 2003 Sep; 33(9):1244-51. PubMed ID: 12956746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitogen-activated protein kinase cascades in plants: a new nomenclature.
    MAPK Group
    Trends Plant Sci; 2002 Jul; 7(7):301-8. PubMed ID: 12119167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of extracellular signal-regulated kinase and c-Jun-NH(2)-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells.
    Yu W; Liao QY; Hantash FM; Sanders BG; Kline K
    Cancer Res; 2001 Sep; 61(17):6569-76. PubMed ID: 11522656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors.
    Bianchini L; L'Allemain G; Pouysségur J
    J Biol Chem; 1997 Jan; 272(1):271-9. PubMed ID: 8995258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.