These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 34944215)
1. Strategy to Predict High and Low Frequency Behaviors Using Triaxial Accelerometers in Grazing of Beef Cattle. Watanabe RN; Bernardes PA; Romanzini EP; Braga LG; Brito TR; Teobaldo RW; Reis RA; Munari DP Animals (Basel); 2021 Dec; 11(12):. PubMed ID: 34944215 [TBL] [Abstract][Full Text] [Related]
2. Disentangling data dependency using cross-validation strategies to evaluate prediction quality of cattle grazing activities using machine learning algorithms and wearable sensor data. Coelho Ribeiro LA; Bresolin T; Rosa GJM; Rume Casagrande D; Danes MAC; Dórea JRR J Anim Sci; 2021 Sep; 99(9):. PubMed ID: 34223900 [TBL] [Abstract][Full Text] [Related]
3. Feature Selection and Comparison of Machine Learning Algorithms in Classification of Grazing and Rumination Behaviour in Sheep. Mansbridge N; Mitsch J; Bollard N; Ellis K; Miguel-Pacheco GG; Dottorini T; Kaler J Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347653 [TBL] [Abstract][Full Text] [Related]
4. Classification of broiler behaviours using triaxial accelerometer and machine learning. Yang X; Zhao Y; Street GM; Huang Y; Filip To SD; Purswell JL Animal; 2021 Jul; 15(7):100269. PubMed ID: 34102430 [TBL] [Abstract][Full Text] [Related]
5. Inferring behavioral states of grazing livestock from high-frequency position data alone. Homburger H; Schneider MK; Hilfiker S; Lüscher A PLoS One; 2014; 9(12):e114522. PubMed ID: 25474315 [TBL] [Abstract][Full Text] [Related]
6. A Pilot Study Using Accelerometers to Characterise the Licking Behaviour of Penned Cattle at a Mineral Block Supplement. Simanungkalit G; Barwick J; Cowley F; Dobos R; Hegarty R Animals (Basel); 2021 Apr; 11(4):. PubMed ID: 33920600 [TBL] [Abstract][Full Text] [Related]
7. Using Sensor Data to Detect Lameness and Mastitis Treatment Events in Dairy Cows: A Comparison of Classification Models. Post C; Rietz C; Büscher W; Müller U Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664417 [TBL] [Abstract][Full Text] [Related]
8. Comparing different algorithms for the course of Alzheimer's disease using machine learning. Tang X; Liu J Ann Palliat Med; 2021 Sep; 10(9):9715-9724. PubMed ID: 34628897 [TBL] [Abstract][Full Text] [Related]
9. Authentication of beef cuts by multielement and machine learning approaches. Mazola YT; Fernandes EAN; Sarriés GA; Bacchi MA; Gonzaga CL J Trace Elem Med Biol; 2023 Jul; 78():127164. PubMed ID: 37031660 [TBL] [Abstract][Full Text] [Related]
10. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510 [TBL] [Abstract][Full Text] [Related]
11. Comparison of machine learning techniques to predict unplanned readmission following total shoulder arthroplasty. Arvind V; London DA; Cirino C; Keswani A; Cagle PJ J Shoulder Elbow Surg; 2021 Feb; 30(2):e50-e59. PubMed ID: 32868011 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Accelerometer and GPS Data for Cattle Behaviour Identification and Anomalous Events Detection. Cabezas J; Yubero R; Visitación B; Navarro-García J; Algar MJ; Cano EL; Ortega F Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327847 [TBL] [Abstract][Full Text] [Related]
13. Early prediction of respiratory disease in preweaning dairy calves using feeding and activity behaviors. Bowen JM; Haskell MJ; Miller GA; Mason CS; Bell DJ; Duthie CA J Dairy Sci; 2021 Nov; 104(11):12009-12018. PubMed ID: 34454762 [TBL] [Abstract][Full Text] [Related]
14. The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats ( Smit M; Ikurior SJ; Corner-Thomas RA; Andrews CJ; Draganova I; Thomas DG Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631701 [TBL] [Abstract][Full Text] [Related]
15. Using animal-mounted sensor technology and machine learning to predict time-to-calving in beef and dairy cows. Miller GA; Mitchell M; Barker ZE; Giebel K; Codling EA; Amory JR; Michie C; Davison C; Tachtatzis C; Andonovic I; Duthie CA Animal; 2020 Jun; 14(6):1304-1312. PubMed ID: 31928536 [TBL] [Abstract][Full Text] [Related]
16. Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh. Talukder A; Ahammed B Nutrition; 2020 Oct; 78():110861. PubMed ID: 32592978 [TBL] [Abstract][Full Text] [Related]
17. Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults. Alizadeh J; Bogdan M; Classen J; Fricke C Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770473 [TBL] [Abstract][Full Text] [Related]
18. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Ozçift A Comput Biol Med; 2011 May; 41(5):265-71. PubMed ID: 21419401 [TBL] [Abstract][Full Text] [Related]
19. Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients. Chowdhury NH; Reaz MBI; Haque F; Ahmad S; Ali SHM; A Bakar AA; Bhuiyan MAS Diagnostics (Basel); 2021 Dec; 11(12):. PubMed ID: 34943504 [TBL] [Abstract][Full Text] [Related]
20. Technical note: validation of a system for monitoring individual behavior in beef heifers. Merenda VR; Marques O; Miller-Cushon EK; Dilorenzo N; Laporta J; Chebel RC J Anim Sci; 2019 Dec; 97(12):4732-4736. PubMed ID: 31616938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]