These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34944219)

  • 41. Habitat usage of Daubenton's bat (
    Todd VLG; Williamson LD
    Ecol Evol; 2019 Apr; 9(8):4853-4863. PubMed ID: 31031948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Habitat Preferences of Soprano Pipistrelle
    Rachwald A; Bradford T; Borowski Z; Racey PA
    Zool Stud; 2016; 55():e22. PubMed ID: 31966167
    [No Abstract]   [Full Text] [Related]  

  • 43. Under temperate weather conditions, dairy goats use an outdoor run more with increasing warmth and avoid light wind or rain.
    Stachowicz J; Lanter A; Gygax L; Hillmann E; Wechsler B; Keil NM
    J Dairy Sci; 2019 Feb; 102(2):1508-1521. PubMed ID: 30580943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A GIS-based multi-criteria model for offshore wind energy power plants site selection in both sides of the Aegean Sea.
    Tercan E; Tapkın S; Latinopoulos D; Dereli MA; Tsiropoulos A; Ak MF
    Environ Monit Assess; 2020 Sep; 192(10):652. PubMed ID: 32964332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wind farm facilities in Germany kill noctule bats from near and far.
    Lehnert LS; Kramer-Schadt S; Schönborn S; Lindecke O; Niermann I; Voigt CC
    PLoS One; 2014; 9(8):e103106. PubMed ID: 25118805
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epifauna dynamics at an offshore foundation--implications of future wind power farming in the North Sea.
    Krone R; Gutow L; Joschko TJ; Schröder A
    Mar Environ Res; 2013 Apr; 85():1-12. PubMed ID: 23312860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Corneal sensitivity is required for orientation in free-flying migratory bats.
    Lindecke O; Holland RA; Pētersons G; Voigt CC
    Commun Biol; 2021 May; 4(1):522. PubMed ID: 33953327
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea.
    Coates DA; Deschutter Y; Vincx M; Vanaverbeke J
    Mar Environ Res; 2014 Apr; 95():1-12. PubMed ID: 24373388
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting migration routes for three species of migratory bats using species distribution models.
    Wieringa JG; Carstens BC; Gibbs HL
    PeerJ; 2021; 9():e11177. PubMed ID: 33959415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Endangered Atlantic Sturgeon in the New York Wind Energy Area: implications of future development in an offshore wind energy site.
    Ingram EC; Cerrato RM; Dunton KJ; Frisk MG
    Sci Rep; 2019 Aug; 9(1):12432. PubMed ID: 31455878
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Projected changes in prevailing winds for transatlantic migratory birds under global warming.
    La Sorte FA; Fink D
    J Anim Ecol; 2017 Mar; 86(2):273-284. PubMed ID: 27973732
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influences of weather and topography on water bird migration in the southwestern United States.
    Beason RC
    Oecologia; 1978 Jan; 32(2):153-169. PubMed ID: 28309395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increasing evidence that bats actively forage at wind turbines.
    Foo CF; Bennett VJ; Hale AM; Korstian JM; Schildt AJ; Williams DA
    PeerJ; 2017; 5():e3985. PubMed ID: 29114441
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Features of X-Band Radar Backscattering Simulation Based on the Ocean Environmental Parameters in China Offshore Seas.
    Wu T; Wu Z; Wu J; Jeon G; Ma L
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30060560
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The immune response of bats differs between pre-migration and migration seasons.
    Voigt CC; Fritze M; Lindecke O; Costantini D; Pētersons G; Czirják GÁ
    Sci Rep; 2020 Oct; 10(1):17384. PubMed ID: 33060711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Year-round spatiotemporal distribution of harbour porpoises within and around the Maryland wind energy area.
    Wingfield JE; O'Brien M; Lyubchich V; Roberts JJ; Halpin PN; Rice AN; Bailey H
    PLoS One; 2017; 12(5):e0176653. PubMed ID: 28467455
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determinants of spring migration departure decision in a bat.
    Dechmann DKN; Wikelski M; Ellis-Soto D; Safi K; O'Mara MT
    Biol Lett; 2017 Sep; 13(9):. PubMed ID: 28931730
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of offshore windfarms on seabird abundance: Strong effects in spring and in the breeding season.
    Peschko V; Mendel B; Müller S; Markones N; Mercker M; Garthe S
    Mar Environ Res; 2020 Dec; 162():105157. PubMed ID: 33080559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Offshore Wind Farms on the Early Life Stages of Dicentrarchus labrax.
    Debusschere E; De Coensel B; Vandendriessche S; Botteldooren D; Hostens K; Vincx M; Degraer S
    Adv Exp Med Biol; 2016; 875():197-204. PubMed ID: 26610960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantifying the hurricane catastrophe risk to offshore wind power.
    Rose S; Jaramillo P; Small MJ; Apt J
    Risk Anal; 2013 Dec; 33(12):2126-41. PubMed ID: 23763387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.