These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34944432)

  • 1. Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures.
    Duong VT; Diessner EM; Grazioli G; Martin RW; Butts CT
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse graining molecular dynamics with graph neural networks.
    Husic BE; Charron NE; Lemm D; Wang J; Pérez A; Majewski M; Krämer A; Chen Y; Olsson S; de Fabritiis G; Noé F; Clementi C
    J Chem Phys; 2020 Nov; 153(19):194101. PubMed ID: 33218238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete Molecular Dynamics Approach to the Study of Disordered and Aggregating Proteins.
    Emperador A; Orozco M
    J Chem Theory Comput; 2017 Mar; 13(3):1454-1461. PubMed ID: 28157327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporally Coherent Backmapping of Molecular Trajectories From Coarse-Grained to Atomistic Resolution.
    Shmilovich K; Stieffenhofer M; Charron NE; Hoffmann M
    J Phys Chem A; 2022 Dec; 126(48):9124-9139. PubMed ID: 36417670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct generation of protein conformational ensembles via machine learning.
    Janson G; Valdes-Garcia G; Heo L; Feig M
    Nat Commun; 2023 Feb; 14(1):774. PubMed ID: 36774359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing the transferability of a coarse-grained model to intrinsically disordered proteins.
    Rutter GO; Brown AH; Quigley D; Walsh TR; Allen MP
    Phys Chem Chem Phys; 2015 Dec; 17(47):31741-9. PubMed ID: 26562397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensuring thermodynamic consistency with invertible coarse-graining.
    Chennakesavalu S; Toomer DJ; Rotskoff GM
    J Chem Phys; 2023 Mar; 158(12):124126. PubMed ID: 37003724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep convolutional neural networks for generating atomistic configurations of multi-component macromolecules from coarse-grained models.
    Christofi E; Chazirakis A; Chrysostomou C; Nicolaou MA; Li W; Doxastakis M; Harmandaris VA
    J Chem Phys; 2022 Nov; 157(18):184903. PubMed ID: 36379782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained force fields for molecular simulations.
    Barnoud J; Monticelli L
    Methods Mol Biol; 2015; 1215():125-49. PubMed ID: 25330962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning coarse-grained potentials of protein thermodynamics.
    Majewski M; Pérez A; Thölke P; Doerr S; Charron NE; Giorgino T; Husic BE; Clementi C; Noé F; De Fabritiis G
    Nat Commun; 2023 Sep; 14(1):5739. PubMed ID: 37714883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials.
    Lu L; Voth GA
    J Chem Phys; 2011 Jun; 134(22):224107. PubMed ID: 21682507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning of Coarse-Grained Molecular Dynamics Force Fields.
    Wang J; Olsson S; Wehmeyer C; Pérez A; Charron NE; de Fabritiis G; Noé F; Clementi C
    ACS Cent Sci; 2019 May; 5(5):755-767. PubMed ID: 31139712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models.
    Zhang Z; Pfaendtner J; Grafmüller A; Voth GA
    Biophys J; 2009 Oct; 97(8):2327-37. PubMed ID: 19843465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
    Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ
    Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution structural characterization of Noxa, an intrinsically disordered protein, by microsecond molecular dynamics simulations.
    Espinoza-Fonseca LM; Kelekar A
    Mol Biosyst; 2015 Jul; 11(7):1850-6. PubMed ID: 25855872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implicit solvent systematic coarse-graining of dioleoylphosphatidylethanolamine lipids: From the inverted hexagonal to the bilayer structure.
    Mortezazadeh S; Jamali Y; Naderi-Manesh H; Lyubartsev AP
    PLoS One; 2019; 14(4):e0214673. PubMed ID: 30951539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Network Based Prediction of Conformational Free Energies - A New Route toward Coarse-Grained Simulation Models.
    Lemke T; Peter C
    J Chem Theory Comput; 2017 Dec; 13(12):6213-6221. PubMed ID: 29120633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeePCG: Constructing coarse-grained models via deep neural networks.
    Zhang L; Han J; Wang H; Car R; E W
    J Chem Phys; 2018 Jul; 149(3):034101. PubMed ID: 30037247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.