These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34944547)
1. A Deep Convolutional Neural Network for Prediction of Peptide Collision Cross Sections in Ion Mobility Spectrometry. Samukhina YV; Matyushin DD; Grinevich OI; Buryak AK Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944547 [TBL] [Abstract][Full Text] [Related]
2. Accurate Prediction of y Ions in Beam-Type Collision-Induced Dissociation Using Deep Learning. Shin H; Park Y; Ahn K; Kim S Anal Chem; 2022 Jun; 94(22):7752-7758. PubMed ID: 35609248 [TBL] [Abstract][Full Text] [Related]
3. Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry. Wang B; Valentine S; Plasencia M; Raghuraman S; Zhang X BMC Bioinformatics; 2010 Apr; 11():182. PubMed ID: 20380738 [TBL] [Abstract][Full Text] [Related]
4. Deep learning the collisional cross sections of the peptide universe from a million experimental values. Meier F; Köhler ND; Brunner AD; Wanka JH; Voytik E; Strauss MT; Theis FJ; Mann M Nat Commun; 2021 Feb; 12(1):1185. PubMed ID: 33608539 [TBL] [Abstract][Full Text] [Related]
5. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks. Lin YM; Chen CT; Chang JM BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640 [TBL] [Abstract][Full Text] [Related]
6. AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics. Zeng WF; Zhou XX; Willems S; Ammar C; Wahle M; Bludau I; Voytik E; Strauss MT; Mann M Nat Commun; 2022 Nov; 13(1):7238. PubMed ID: 36433986 [TBL] [Abstract][Full Text] [Related]
7. [Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines]. Zhai R; Gao W; Li M; Yang H Se Pu; 2022 Sep; 40(9):782-787. PubMed ID: 36156624 [TBL] [Abstract][Full Text] [Related]
9. Predicting Ion Mobility Collision Cross-Sections Using a Deep Neural Network: DeepCCS. Plante PL; Francovic-Fontaine É; May JC; McLean JA; Baker ES; Laviolette F; Marchand M; Corbeil J Anal Chem; 2019 Apr; 91(8):5191-5199. PubMed ID: 30932474 [TBL] [Abstract][Full Text] [Related]
10. [Research progress and application of retention time prediction method based on deep learning]. DU Z; Shao W; Qin W Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303 [TBL] [Abstract][Full Text] [Related]
11. Peptide collision cross sections of 22 post-translational modifications. Will A; Oliinyk D; Bleiholder C; Meier F Anal Bioanal Chem; 2023 Nov; 415(27):6633-6645. PubMed ID: 37758903 [TBL] [Abstract][Full Text] [Related]
12. Tandem Trapped Ion Mobility Spectrometry/Mass Spectrometry (tTIMS/MS) Reveals Sequence-Specific Determinants of Top-Down Protein Fragment Ion Cross Sections. Liu FC; Kirk SR; Caldwell KA; Pedrete T; Meier F; Bleiholder C Anal Chem; 2022 Jun; 94(23):8146-8155. PubMed ID: 35621336 [TBL] [Abstract][Full Text] [Related]
13. A collision cross-section database of singly-charged peptide ions. Tao L; McLean JR; McLean JA; Russell DH J Am Soc Mass Spectrom; 2007 Jul; 18(7):1232-8. PubMed ID: 17512751 [TBL] [Abstract][Full Text] [Related]
14. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning. Zhou XX; Zeng WF; Chi H; Luo C; Liu C; Zhan J; He SM; Zhang Z Anal Chem; 2017 Dec; 89(23):12690-12697. PubMed ID: 29125736 [TBL] [Abstract][Full Text] [Related]
15. Effect of Phosphorylation on the Collision Cross Sections of Peptide Ions in Ion Mobility Spectrometry. Ogata K; Chang CH; Ishihama Y Mass Spectrom (Tokyo); 2021; 10():A0093. PubMed ID: 33552826 [TBL] [Abstract][Full Text] [Related]
16. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Baczek T; Kaliszan R Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394 [TBL] [Abstract][Full Text] [Related]
17. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Meier F; Brunner AD; Koch S; Koch H; Lubeck M; Krause M; Goedecke N; Decker J; Kosinski T; Park MA; Bache N; Hoerning O; Cox J; Räther O; Mann M Mol Cell Proteomics; 2018 Dec; 17(12):2534-2545. PubMed ID: 30385480 [TBL] [Abstract][Full Text] [Related]
18. Optimum collision energies for proteomics: The impact of ion mobility separation. Nagy K; Gellén G; Papp D; Schlosser G; Révész Á J Mass Spectrom; 2023 Sep; 58(9):e4957. PubMed ID: 37415399 [TBL] [Abstract][Full Text] [Related]
19. Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics. Haynes SE; Polasky DA; Dixit SM; Majmudar JD; Neeson K; Ruotolo BT; Martin BR Anal Chem; 2017 Jun; 89(11):5669-5672. PubMed ID: 28471653 [TBL] [Abstract][Full Text] [Related]
20. Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction? Jia W; Peng J; Zhang Y; Zhu J; Qiang X; Zhang R; Shi L Food Res Int; 2023 Dec; 174(Pt 1):113640. PubMed ID: 37986483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]