These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Optical depolarization changes in single, skinned muscle fibers. Evidence for cross-bridge involvement. Baskin RJ; Yeh Y; Burton K; Chen JS; Jones M Biophys J; 1986 Jul; 50(1):63-74. PubMed ID: 3488081 [TBL] [Abstract][Full Text] [Related]
5. [Dependence of rigor tension developed by skinned rabbit psoas fibers on the ionic strength of solution]. Lednev VV; Srebnitskaia LK; Khromov AS Biofizika; 1983; 28(3):508-9. PubMed ID: 6871277 [TBL] [Abstract][Full Text] [Related]
6. Radial stiffness of frog skinned muscle fibers in relaxed and rigor conditions. Umazume Y; Kasuga N Biophys J; 1984 Apr; 45(4):783-8. PubMed ID: 6609727 [TBL] [Abstract][Full Text] [Related]
7. X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths. Brenner B; Yu LC; Podolsky RJ Biophys J; 1984 Sep; 46(3):299-306. PubMed ID: 6487731 [TBL] [Abstract][Full Text] [Related]
8. Donnan potentials from the A- and I-bands of glycerinated and chemically skinned muscles, relaxed and in rigor. Bartels EM; Elliott GF Biophys J; 1985 Jul; 48(1):61-76. PubMed ID: 4016210 [TBL] [Abstract][Full Text] [Related]
9. Depolarization spectrum of diffracted light from muscle fiber. The intrinsic anisotropy component. Yeh Y; Baskin RJ; Brown RA; Burton K Biophys J; 1985 May; 47(5):739-42. PubMed ID: 4016194 [TBL] [Abstract][Full Text] [Related]
10. Quantitative studies on the polarization optical properties of striated muscle. I. Birefringence changes of rabbit psoas muscle in the transition from rigor to relaxed state. Toylor DL J Cell Biol; 1976 Mar; 68(3):497-511. PubMed ID: 16016 [TBL] [Abstract][Full Text] [Related]
12. The molecular origin of birefringence in skeletal muscle. Contribution of myosin subfragment S-1. Jones HM; Baskin RJ; Yeh Y Biophys J; 1991 Nov; 60(5):1217-28. PubMed ID: 1760508 [TBL] [Abstract][Full Text] [Related]
13. Radial forces within muscle fibers in rigor. Maughan DW; Godt RE J Gen Physiol; 1981 Jan; 77(1):49-64. PubMed ID: 6970793 [TBL] [Abstract][Full Text] [Related]
14. The effect of ionic strength on the kinetics of rigor development in skinned fast-twitch skeletal muscle fibres. Veigel C; von Maydell RD; Kress KR; Molloy JE; Fink RH Pflugers Arch; 1998 May; 435(6):753-61. PubMed ID: 9518502 [TBL] [Abstract][Full Text] [Related]
15. Structures of actomyosin crossbridges in relaxed and rigor muscle fibers. Yu LC; Brenner B Biophys J; 1989 Mar; 55(3):441-53. PubMed ID: 2930830 [TBL] [Abstract][Full Text] [Related]
16. Filament lattice of frog striated muscle. Radial forces, lattice stability, and filament compression in the A-band of relaxed and rigor muscle. Millman BM; Irving TC Biophys J; 1988 Sep; 54(3):437-47. PubMed ID: 3264728 [TBL] [Abstract][Full Text] [Related]
17. Elastic properties of relaxed, activated, and rigor muscle fibers measured with microsecond resolution. Jung DW; Blangé T; de Graaf H; Treijtel BW Biophys J; 1988 Nov; 54(5):897-908. PubMed ID: 3266558 [TBL] [Abstract][Full Text] [Related]
18. A quantitative analysis of elastic, entropic, electrostatic, and osmotic forces within relaxed skinned muscle fibers. Maughan DW; Godt RE Biophys Struct Mech; 1980; 7(1):17-40. PubMed ID: 6971660 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers. Schoenberg M Biophys J; 1988 Jul; 54(1):135-48. PubMed ID: 3261996 [TBL] [Abstract][Full Text] [Related]
20. [Monitoring the orientation of myosin bridges on two-dimensional maps of birefringence in a single muscle fiber]. Skrebnitskaia LK; Neĭman SA; Rozhdestvenskaia ZE; Vishniakov GN Biofizika; 2002; 47(4):686-90. PubMed ID: 12298207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]