BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34944921)

  • 1. Interleukin (IL)-9 Supports the Tumor-Promoting Environment of Chronic Lymphocytic Leukemia.
    Patrussi L; Capitani N; Baldari CT
    Cancers (Basel); 2021 Dec; 13(24):. PubMed ID: 34944921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monocytic MDSC as a source of immunosuppressive cytokines in chronic lymphocytic leukemia (CLL) microenvironment.
    Kowalska W; Bojarska-Junak A
    Folia Histochem Cytobiol; 2020; 58(1):25-36. PubMed ID: 32227331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of IL-9 induced by STAT6 activation promotes the pathogenesis of chronic lymphocytic leukemia.
    Chen N; Lu K; Li P; Lv X; Wang X
    Int J Clin Exp Pathol; 2014; 7(5):2319-23. PubMed ID: 24966942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival and Immunosuppression Induced by Hepatocyte Growth Factor in Chronic Lymphocytic Leukemia.
    Giannoni P; Cutrona G; Totero D
    Curr Mol Med; 2017; 17(1):24-33. PubMed ID: 28231754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond bystanders: Myeloid cells in chronic lymphocytic leukemia.
    Hanna BS; Öztürk S; Seiffert M
    Mol Immunol; 2019 Jun; 110():77-87. PubMed ID: 29173971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-2 enhances the production of tumor necrosis factor-alpha in activated B-type chronic lymphocytic leukemia (B-CLL) cells.
    Larsson LG; Carlsson M; Schena M; Lantz M; Caligaris-Cappio F; Nilsson K
    Leukemia; 1993 Feb; 7(2):226-34. PubMed ID: 8381194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased autocrine interleukin-6 production is significantly associated with worse clinical outcome in patients with chronic lymphocytic leukemia.
    Wang HQ; Jia L; Li YT; Farren T; Agrawal SG; Liu FT
    J Cell Physiol; 2019 Aug; 234(8):13994-14006. PubMed ID: 30623437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiogenic growth factors: autocrine and paracrine regulation of survival in hematologic malignancies.
    Gabrilove JL
    Oncologist; 2001; 6 Suppl 5():4-7. PubMed ID: 11700386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD40 signaling instructs chronic lymphocytic leukemia cells to attract monocytes via the CCR2 axis.
    van Attekum MHA; van Bruggen JAC; Slinger E; Lebre MC; Reinen E; Kersting S; Eldering E; Kater AP
    Haematologica; 2017 Dec; 102(12):2069-2076. PubMed ID: 28971904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-8 induces the accumulation of B-cell chronic lymphocytic leukemia cells by prolonging survival in an autocrine fashion.
    Francia di Celle P; Mariani S; Riera L; Stacchini A; Reato G; Foa R
    Blood; 1996 May; 87(10):4382-9. PubMed ID: 8639799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Interleukin-6 in the Autocrine Stimulation of Chronic Lymphocytic Leukemia B Cells by Tumor Necrosis Factor.
    Hahn T; Shulman L; Karov Y; Vorst E; Berrebi A
    Leuk Lymphoma; 1991; 5 Suppl 1():65-9. PubMed ID: 27463482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of high expression of IL-9 in prognosis of CLL.
    Chen N; Lv X; Li P; Lu K; Wang X
    Int J Clin Exp Pathol; 2014; 7(2):716-21. PubMed ID: 24551294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of IL-2 and IL-21 on expansion of the CD4+ CD25+ Foxp3+ T regulatory cells with redundant roles in natural killer cell mediated antibody dependent cellular cytotoxicity in chronic lymphocytic leukemia.
    Gowda A; Ramanunni A; Cheney C; Rozewski D; Kindsvogel W; Lehman A; Jarjoura D; Caligiuri M; Byrd JC; Muthusamy N
    MAbs; 2010; 2(1):35-41. PubMed ID: 20081380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IL-17 Signaling in the Tumor Microenvironment.
    Gorczynski RM
    Adv Exp Med Biol; 2020; 1240():47-58. PubMed ID: 32060887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IL-17 and IL-23 levels in patients with early-stage chronic lymphocytic leukemia.
    Bankir M; Acik DY
    North Clin Istanb; 2021; 8(1):24-30. PubMed ID: 33623869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro.
    Zhu F; McCaw L; Spaner DE; Gorczynski RM
    Leuk Res; 2018 Mar; 66():28-38. PubMed ID: 29353760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining the Microenvironment for Therapeutic Targets in Chronic Lymphocytic Leukemia.
    Kipps TJ
    Cancer J; 2021 Jul-Aug 01; 27(4):306-313. PubMed ID: 34398557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-21 receptor (IL-21R) is up-regulated by CD40 triggering and mediates proapoptotic signals in chronic lymphocytic leukemia B cells.
    de Totero D; Meazza R; Zupo S; Cutrona G; Matis S; Colombo M; Balleari E; Pierri I; Fabbi M; Capaia M; Azzarone B; Gobbi M; Ferrarini M; Ferrini S
    Blood; 2006 May; 107(9):3708-15. PubMed ID: 16391014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble interleukin-2 receptor, soluble CD8 and soluble intercellular adhesion molecule-1 levels in hematologic malignancies.
    Srivastava MD; Srivastava A; Srivastava BI
    Leuk Lymphoma; 1994 Jan; 12(3-4):241-51. PubMed ID: 7909467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gene expression response of chronic lymphocytic leukemia cells to IL-4 is specific, depends on ZAP-70 status and is differentially affected by an NFκB inhibitor.
    Ruiz-Lafuente N; Alcaraz-García MJ; Sebastián-Ruiz S; Gómez-Espuch J; Funes C; Moraleda JM; García-Garay MC; Montes-Barqueros N; Minguela A; Álvarez-López MR; Parrado A
    PLoS One; 2014; 9(10):e109533. PubMed ID: 25280001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.