These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34945309)

  • 1. Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps.
    Bußmann A; Thalhofer T; Hoffmann S; Daum L; Surendran N; Hayden O; Hubbuch J; Richter M
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lab-on-a-disc with reversible and thermally stable diaphragm valves.
    Kim TH; Sunkara V; Park J; Kim CJ; Woo HK; Cho YK
    Lab Chip; 2016 Oct; 16(19):3741-9. PubMed ID: 27534824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics.
    Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S
    Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Output Performance of a Resonant Piezoelectric Pump by Adding Proof Masses to a U-Shaped Piezoelectric Resonator.
    Chen J; Gao W; Liu C; He L; Zeng Y
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33946645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of a Passive-Valve Piezoelectric Micro-Pump: A Parametric Study.
    Aboubakri A; Ahmadi VE; Koşar A
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoelectric micropump with integrated elastomeric check valves: design, performance characterization and primary application for 3D cell culture.
    Holman JB; Zhu X; Cheng H
    Biomed Microdevices; 2023 Jan; 25(1):5. PubMed ID: 36648587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Resonant Piezoelectric Diaphragm Pump Transferring Gas with Compact Structure.
    Wang J; Liu Y; Shen Y; Chen S; Yang Z
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric pumping in flow analysis: Application to the spectrophotometric determination of gabapentin.
    Ribeiro MF; Santos JL; Lima JL
    Anal Chim Acta; 2007 Sep; 600(1-2):14-20. PubMed ID: 17903459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Controllable and Integrated Pump-enabled Microfluidic Chip and Its Application in Droplets Generating.
    Zhao B; Cui X; Ren W; Xu F; Liu M; Ye ZG
    Sci Rep; 2017 Sep; 7(1):11319. PubMed ID: 28900226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Delivery of High Viscosity Liquids Using Piezoelectric Micropumps for Subcutaneous Drug Infusion Applications.
    Surendran N; Durasiewicz CP; Hoffmann T; Wille A; Bussmann AB; Richter M
    IEEE Open J Eng Med Biol; 2024; 5():21-31. PubMed ID: 38487095
    [No Abstract]   [Full Text] [Related]  

  • 11. Capacitive Sensor and Alternating Drive Mixing for Microfluidic Applications Using Micro Diaphragm Pumps.
    Thalhofer T; Keck M; Kibler S; Hayden O
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-electro-mechanical synergistic effect on the actuation performance of piezoelectric stack.
    Li Y; Xiang X; Fei Z; Huang B; Zheng Y; Zhang S; Shen X
    Rev Sci Instrum; 2021 Dec; 92(12):125004. PubMed ID: 34972414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stand-alone peristaltic micropump based on piezoelectric actuation.
    Jang LS; Li YJ; Lin SJ; Hsu YC; Yao WS; Tsai MC; Hou CC
    Biomed Microdevices; 2007 Apr; 9(2):185-94. PubMed ID: 17160705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Surface and Bulk Resonant Acoustics for Concurrent Actuation and Sensing on a Single Microfluidic Device.
    Nguyen EP; Lee L; Rezk AR; Sabri YM; Bhargava SK; Yeo LY
    Anal Chem; 2018 Apr; 90(8):5335-5342. PubMed ID: 29624368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and analysis of impedance pumps utilizing electromagnetic actuation.
    Wang YH; Tsai YW; Tsai CH; Lee CY; Fu LM
    Sensors (Basel); 2010; 10(4):4040-52. PubMed ID: 22319340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated microfluidic pumps and valves operated by finger actuation.
    Park J; Park JK
    Lab Chip; 2019 Sep; 19(18):2973-2977. PubMed ID: 31433426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture.
    Xu ZR; Yang CG; Liu CH; Zhou Z; Fang J; Wang JH
    Talanta; 2010 Jan; 80(3):1088-93. PubMed ID: 20006057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly and simple demonstration of a micropump installing PDMS-based thin membranes as flexible micro check valves.
    Tanaka Y; Sato K; Kitamori T
    J Biomed Nanotechnol; 2009 Oct; 5(5):516-20. PubMed ID: 20201426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators.
    Jang LS; Shu K; Yu YC; Li YJ; Chen CH
    Biomed Microdevices; 2009 Feb; 11(1):173-81. PubMed ID: 18821016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.