BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34945369)

  • 1. Convenient Heme Nanorod Modified Electrode for Quercetin Sensing by Two Common Electrochemical Methods.
    Liu JG; Wan JZ; Lin QM; Han GC; Feng XZ; Chen Z
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltammetric sensor based on cobalt-poly(methionine)-modified glassy carbon electrode for determination of estriol hormone in pharmaceuticals and urine.
    Gomes ES; Leite FRF; Ferraz BRL; Mourão HAJL; Malagutti AR
    J Pharm Anal; 2019 Oct; 9(5):347-357. PubMed ID: 31929944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Electrochemical and Photoelectrochemical Sensing Platform Based on Porphyrinic Metal-Organic Frameworks for Determination of Ascorbic Acid.
    Xu X; Li CH; Zhang H; Guo XM
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interference-free electrocatalysis of p-chloro meta xylenol (PCMX) on uniquely designed optimized polymeric nanohybrid of P(EDOT-co-OPD) and fMWCNT modified glassy carbon electrode.
    Brahma B; Sen S; Sarkar P; Sarkar U
    Anal Chim Acta; 2021 Jul; 1168():338595. PubMed ID: 34052000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Sensors based on Gold-Silver Core-Shell Nanoparticles Combined with a Graphene/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Paraoxon-ethyl Detection.
    Wahyuni WT; Putra BR; Rahman HA; Anindya W; Hardi J; Rustami E; Ahmad SN
    ACS Omega; 2024 Jan; 9(2):2896-2910. PubMed ID: 38250352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine.
    Thapliyal NB; Chiwunze TE; Karpoormath R; Cherukupalli S
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():27-35. PubMed ID: 28254294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step solvothermal synthesis of nanoflake-nanorod WS
    Durai L; Kong CY; Badhulika S
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110217. PubMed ID: 31761166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Mn-TPP/RGO Tailored Glassy Carbon Electrode for Doxorubicin Sensing.
    Zafar R; Bukhari SAB; Nasir H
    ACS Omega; 2024 Jun; 9(24):25694-25703. PubMed ID: 38911732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltammetric determination of TBHQ at a glassy carbon electrode surface activated by in situ chemical oxidation.
    Wang Z; Yang F; Zheng H; Qin X; Luo J; Li Y; Xiao D
    Analyst; 2014 Jul; 139(14):3622-8. PubMed ID: 24886910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical determination of quercetin using glassy carbon electrode modified with WS
    Mariyappan V; Karuppusamy N; Chen SM; Raja P; Ramachandran R
    Mikrochim Acta; 2022 Feb; 189(3):118. PubMed ID: 35195788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltammetric sensor for an anti-cancer drug cisplatin based on bismuth nanoparticles/graphene modified glassy carbon electrode.
    Khumngern S; Choosang J; Kanatharana P; Thavarungkul P; Numnuam A
    Talanta; 2024 Jan; 267():125147. PubMed ID: 37672987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sensitive sensor based on molecularly imprinted polypyrrole on reduced graphene oxide modified glassy carbon electrode for nevirapine analysis.
    Hassan Pour B; Haghnazari N; Keshavarzi F; Ahmadi E; Zarif BR
    Anal Methods; 2021 Oct; 13(40):4767-4777. PubMed ID: 34569556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Sensor for Simple and Sensitive Determination of Hydroquinone in Water Samples Using Modified Glassy Carbon Electrode.
    Karami-Kolmoti P; Beitollahi H; Modiri S
    Biomedicines; 2023 Jun; 11(7):. PubMed ID: 37509508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile one-pot method of AuNPs/PEDOT/CNT composites for simultaneous detection of dopamine with a high concentration of ascorbic acid and uric acid.
    Chen S; Chen W; Wang Y; Wang X; Ding Y; Zhao D; Liu J
    RSC Adv; 2022 May; 12(24):15038-15045. PubMed ID: 35702427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-Cyclodextrin functionalized 3D reduced graphene oxide composite-based electrochemical sensor for the sensitive detection of dopamine.
    Chen X; Li N; Rong Y; Hou Y; Huang Y; Liang W
    RSC Adv; 2021 Aug; 11(45):28052-28060. PubMed ID: 35480757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid.
    Guan JF; Zou J; Liu YP; Jiang XY; Yu JG
    Ecotoxicol Environ Saf; 2020 Sep; 201():110872. PubMed ID: 32559693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of an electrochemical sensor using copper oxide nanoparticles/polyalizarin yellow R nanocomposite for hydrogen peroxide.
    Amini N; Rashidzadeh B; Amanollahi N; Maleki A; Yang JK; Lee SM
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38809-38816. PubMed ID: 33740190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Sensors Based on a Composite of Electrochemically Reduced Graphene Oxide and PEDOT:PSS for Hydrazine Detection.
    Rahman HA; Rafi M; Putra BR; Wahyuni WT
    ACS Omega; 2023 Jan; 8(3):3258-3269. PubMed ID: 36713748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile bimetallic co-amplified electrochemical sensor for folic acid sensing based on CoNPs and CuNPs.
    Zhou ZF; Feng XZ; Zhan T; Han GC; Chen Z; Kraatz HB
    Anal Bioanal Chem; 2022 Sep; 414(23):6791-6800. PubMed ID: 35931786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel electrochemical sensor for detecting hyperin with a nanocomposite of ZrO
    Li S; Lei S; Yu Q; Zou L; Ye B
    Talanta; 2018 Aug; 185():453-460. PubMed ID: 29759227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.