These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 34945370)

  • 1. A 20-44 GHz Wideband LNA Design Using the SiGe Technology for 5G Millimeter-Wave Applications.
    Balani W; Sarvagya M; Ali T; Samasgikar A; Kumar P; Pathan S; Pai M M M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wideband SiGe-HBT Low-Noise Amplifier with Resistive Feedback and Shunt Peaking.
    Song I; Ryu G; Jung SH; Cressler JD; Cho MK
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 160 GHz D-Band Low-Noise Amplifier and Power Amplifier for Radar-Based Contactless Vital-Signs-Monitoring Systems.
    Mustapha AA; Sanduleanu M
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 26-28 GHz, Two-Stage, Low-Noise Amplifier for Fifth-Generation Radio Frequency and Millimeter-Wave Applications.
    Ben Hammadi A; Doukkali MA; Descamps P; Niamien C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature Switchable Millimeter-Wave BiCMOS Low-Noise Amplifier at 120/140 GHz Using an HBT Switch.
    Heredia J; Ribó M; Pradell L; Wipf ST; Göritz A; Wietstruck M; Wipf C; Kaynak M
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31546612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Inductorless Gain-Controllable Wideband LNA Based on CCCIIs.
    Wan Q; Liu J; Chen S
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Noise Amplifier with Bypass for 5G New Radio Frequency n77 Band and n79 Band in Radio Frequency Silicon on Insulator Complementary Metal-Oxide Semiconductor Technology.
    Kim MS; Yoo SS
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 1.8-2.7 GHz Triple-Band Low Noise Amplifier with 31.5 dB Dynamic Range of Power Gain and Adaptive Power Consumption for LTE Application.
    Asl SAH; Rad RE; Rikan BS; Pu Y; Hwang KC; Yang Y; Lee KY
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 110-170 GHz Wideband LNA Design Using the InP Technology for Terahertz Communication Applications.
    Hu L; Yang Z; Fang Y; Li Q; Miao Y; Lu X; Sun X; Zhang Y
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A g
    Galante-Sempere D; Torres-Clarke J; Del Pino J; Khemchandani SL
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RF-SOI Low-Noise Amplifier Using RC Feedback and Series Inductive-Peaking Techniques for 5G New Radio Application.
    Kim MS; Yoo SS
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2-V 1.4-dB NF GaAs MMIC LNA for K-Band Applications.
    Galante-Sempere D; Khemchandani SL; Del Pino J
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An MMIC LNA for Millimeter-Wave Radar and 5G Applications with GaN-on-SiC Technology.
    Huang C; Zhang Z; Wang X; Liu H; Zhang G
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Wideband and Low-Power Distributed Cascode Mixer Using Inductive Feedback.
    Kim J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 26-GHz transmitter front-end using double quadrature architecture.
    Lee HS; Park M; Min BW
    PLoS One; 2019; 14(5):e0216474. PubMed ID: 31120917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential BroadBand (1-16 GHz) MMIC GaAs mHEMT Low-Noise Amplifier for Radio Astronomy Applications and Sensing.
    Jimenez-Martin JL; Gonzalez-Posadas V; Parra-Cerrada A; Espinosa-Adams D; Segovia-Vargas D; Hernandez W
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 24-to-30 GHz Ultra-High-Linearity Down-Conversion Mixer for 5G Applications Using a New Linearization Method.
    Yang S; Hu K; Fu H; Ma K; Lu M
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniature Wide-Band Noise-Canceling CMOS LNA.
    Galante-Sempere D; Del Pino J; Khemchandani SL; García-Vázquez H
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matched wideband low-noise amplifiers for radio astronomy.
    Weinreb S; Bardin J; Mani H; Jones G
    Rev Sci Instrum; 2009 Apr; 80(4):044702. PubMed ID: 19405681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Neural Network Modeling of a CMOS Differential Low-Noise Amplifier Using the Bayesian Regularization Algorithm.
    Subburaman B; Thangaraj V; Balu V; Pandyan UM; Kulkarni J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.