These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 34945428)
1. Individual Microparticle Manipulation Using Combined Electroosmosis and Dielectrophoresis through a Si Lyu C; Lou L; Powell-Palm MJ; Ukpai G; Li X; Rubinsky B Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945428 [TBL] [Abstract][Full Text] [Related]
2. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896 [TBL] [Abstract][Full Text] [Related]
3. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles. Walid Rezanoor M; Dutta P Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Xuan X Electrophoresis; 2019 Sep; 40(18-19):2484-2513. PubMed ID: 30816561 [TBL] [Abstract][Full Text] [Related]
5. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects. Xuan X Electrophoresis; 2022 Jan; 43(1-2):167-189. PubMed ID: 33991344 [TBL] [Abstract][Full Text] [Related]
6. Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Lewpiriyawong N; Yang C; Lam YC Biomicrofluidics; 2008 Aug; 2(3):34105. PubMed ID: 19693372 [TBL] [Abstract][Full Text] [Related]
7. Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels. Fernández-Mateo R; Calero V; Morgan H; Ramos A; García-Sánchez P Anal Chem; 2021 Nov; 93(44):14667-14674. PubMed ID: 34704741 [TBL] [Abstract][Full Text] [Related]
8. Characterization of microparticle separation utilizing electrokinesis within an electrodeless dielectrophoresis chip. Chiou CH; Pan JC; Chien LJ; Lin YY; Lin JL Sensors (Basel); 2013 Feb; 13(3):2763-76. PubMed ID: 23447009 [TBL] [Abstract][Full Text] [Related]
9. Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis. Gencoglu A; Olney D; LaLonde A; Koppula KS; Lapizco-Encinas BH Electrophoresis; 2014 Feb; 35(2-3):362-73. PubMed ID: 24166858 [TBL] [Abstract][Full Text] [Related]
11. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Cummings EB; Singh AK Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447 [TBL] [Abstract][Full Text] [Related]
12. Continuous separation of microparticles by size with direct current-dielectrophoresis. Kang KH; Kang Y; Xuan X; Li D Electrophoresis; 2006 Feb; 27(3):694-702. PubMed ID: 16385598 [TBL] [Abstract][Full Text] [Related]
14. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping. Heida T Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336 [TBL] [Abstract][Full Text] [Related]
15. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads. Lewpiriyawong N; Xu G; Yang C Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585 [TBL] [Abstract][Full Text] [Related]
16. AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements. Dey R; Shaik VA; Chakraborty D; Ghosal S; Chakraborty S Langmuir; 2015 Jun; 31(21):5952-61. PubMed ID: 25954982 [TBL] [Abstract][Full Text] [Related]
17. Electroosmotic flow: From microfluidics to nanofluidics. Alizadeh A; Hsu WL; Wang M; Daiguji H Electrophoresis; 2021 Apr; 42(7-8):834-868. PubMed ID: 33382088 [TBL] [Abstract][Full Text] [Related]
18. Separating large microscale particles by exploiting charge differences with dielectrophoresis. Polniak DV; Goodrich E; Hill N; Lapizco-Encinas BH J Chromatogr A; 2018 Apr; 1545():84-92. PubMed ID: 29510869 [TBL] [Abstract][Full Text] [Related]
19. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Sridharan S; Zhu J; Hu G; Xuan X Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988 [TBL] [Abstract][Full Text] [Related]
20. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields. Gallo-Villanueva RC; Rodríguez-López CE; Díaz-de-la-Garza RI; Reyes-Betanzo C; Lapizco-Encinas BH Electrophoresis; 2009 Dec; 30(24):4195-205. PubMed ID: 20013902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]