These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34945440)

  • 1. Evaluation of Self-Field Effects in Magnetometers Based on Meander-Shaped Arrays of Josephson Junctions or SQUIDs Connected in Series.
    Crété D; Kermorvant J; Lemaître Y; Marcilhac B; Mesoraca S; Trastoy J; Ulysse C
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. π phase shifter based on NbN-based ferromagnetic Josephson junction on a silicon substrate.
    Yamashita T; Kim S; Kato H; Qiu W; Semba K; Fujimaki A; Terai H
    Sci Rep; 2020 Aug; 10(1):13687. PubMed ID: 32792626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Arrays of Two-dimensional High-
    Cho EY; Zhou YW; Khapaev MM; Cybart SA
    IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 32042239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube superconducting quantum interference device.
    Cleuziou JP; Wernsdorfer W; Bouchiat V; Ondarçuhu T; Monthioux M
    Nat Nanotechnol; 2006 Oct; 1(1):53-9. PubMed ID: 18654142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation System for Biomagnetic Measurements with Optically Pumped Magnetometers inside a Magnetically Shielded Room.
    Jodko-Władzińska A; Wildner K; Pałko T; Władziński M
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting Quantum Interference in Twisted van der Waals Heterostructures.
    Farrar LS; Nevill A; Lim ZJ; Balakrishnan G; Dale S; Bending SJ
    Nano Lett; 2021 Aug; 21(16):6725-6731. PubMed ID: 34428907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of Phase Dynamics in Planar Josephson Junctions and SQUIDs.
    Haxell DZ; Cheah E; Křížek F; Schott R; Ritter MF; Hinderling M; Belzig W; Bruder C; Wegscheider W; Riel H; Nichele F
    Phys Rev Lett; 2023 Feb; 130(8):087002. PubMed ID: 36898094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental realization of Josephson junctions for an atom SQUID.
    Ryu C; Blackburn PW; Blinova AA; Boshier MG
    Phys Rev Lett; 2013 Nov; 111(20):205301. PubMed ID: 24289693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-axis SQUID-based absolute vector magnetometer.
    Schönau T; Zakosarenko V; Schmelz M; Stolz R; Anders S; Linzen S; Meyer M; Meyer HG
    Rev Sci Instrum; 2015 Oct; 86(10):105002. PubMed ID: 26520976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturization of the Superconducting Memory Cell
    Chen L; Wu L; Wang Y; Pan Y; Zhang D; Zeng J; Liu X; Ma L; Peng W; Wang Y; Ren J; Wang Z
    ACS Nano; 2020 Sep; 14(9):11002-11008. PubMed ID: 32697567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A scanning superconducting quantum interference device with single electron spin sensitivity.
    Vasyukov D; Anahory Y; Embon L; Halbertal D; Cuppens J; Neeman L; Finkler A; Segev Y; Myasoedov Y; Rappaport ML; Huber ME; Zeldov E
    Nat Nanotechnol; 2013 Sep; 8(9):639-44. PubMed ID: 23995454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral antiferromagnetic Josephson junctions as spin-triplet supercurrent spin valves and d.c. SQUIDs.
    Jeon KR; Hazra BK; Kim JK; Jeon JC; Han H; Meyerheim HL; Kontos T; Cottet A; Parkin SSP
    Nat Nanotechnol; 2023 Jul; 18(7):747-753. PubMed ID: 36997754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. d-wave induced zero-field resonances in dc pi-superconducting quantum interference devices.
    Chesca B; Schulz RR; Goetz B; Schneider CW; Hilgenkamp H; Mannhart J
    Phys Rev Lett; 2002 Apr; 88(17):177003. PubMed ID: 12005779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal distribution of phase slips in Josephson junction chains.
    Ergül A; Weißl T; Johansson J; Lidmar J; Haviland DB
    Sci Rep; 2017 Sep; 7(1):11447. PubMed ID: 28904373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Analysis of Optically Pumped
    Zahran S; Mahmoudzadeh M; Wallois F; Betrouni N; Derambure P; Le Prado M; Palacios-Laloy A; Labyt E
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconducting Quantum Interferometers for Nondestructive Evaluation.
    Faley MI; Kostyurina EA; Kalashnikov KV; Maslennikov YV; Koshelets VP; Dunin-Borkowski RE
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29210980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Josephson junctions and DC SQUIDS based on Nb/Al technology.
    Flokstra J; Adelerhof DJ; Houwman EP; Veldhuis D; Rogalla H
    Clin Phys Physiol Meas; 1991; 12 Suppl B():59-66. PubMed ID: 1807881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak spin-flip scattering in Pd
    Pham D; Sugimoto R; Oba K; Takeshita Y; Li F; Tanaka M; Yamashita T; Fujimaki A
    Sci Rep; 2022 Apr; 12(1):6863. PubMed ID: 35478215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-crystalline boron-doped diamond superconducting quantum interference devices with regrowth-induced step edge structure.
    Kageura T; Hideko M; Tsuyuzaki I; Morishita A; Kawano A; Sasama Y; Yamaguchi T; Takano Y; Tachiki M; Ooi S; Hirata K; Arisawa S; Kawarada H
    Sci Rep; 2019 Oct; 9(1):15214. PubMed ID: 31645621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Sensitive Tunable Magnetometer Based on Superconducting Quantum Interference Device.
    Vettoliere A; Granata C
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.