These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34945485)
1. Ozone and Bioactive Compounds in Grapes and Wine. Modesti M; Macaluso M; Taglieri I; Bellincontro A; Sanmartin C Foods; 2021 Nov; 10(12):. PubMed ID: 34945485 [TBL] [Abstract][Full Text] [Related]
2. Ozone treatments of post harvested wine grapes: Impact on fermentative yeasts and wine chemical properties. Cravero F; Englezos V; Rantsiou K; Torchio F; Giacosa S; Segade SR; Gerbi V; Rolle L; Cocolin L Food Res Int; 2016 Sep; 87():134-141. PubMed ID: 29606234 [TBL] [Abstract][Full Text] [Related]
3. Potential Mitigation of Smoke Taint in Wines by Post-Harvest Ozone Treatment of Grapes. Modesti M; Szeto C; Ristic R; Jiang W; Culbert J; Bindon K; Catelli C; Mencarelli F; Tonutti P; Wilkinson K Molecules; 2021 Mar; 26(6):. PubMed ID: 33806831 [TBL] [Abstract][Full Text] [Related]
4. Grape VOCs Response to Postharvest Short-Term Ozone Treatments. Río Segade S; Vilanova M; Pollon M; Giacosa S; Torchio F; Rolle L Front Plant Sci; 2018; 9():1826. PubMed ID: 30619399 [TBL] [Abstract][Full Text] [Related]
5. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products-A Review. Sachadyn-Król M; Agriopoulou S Molecules; 2020 May; 25(10):. PubMed ID: 32455899 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in postharvest technology of the wine grape to improve the wine aroma. Mencarelli F; Bellincontro A J Sci Food Agric; 2020 Nov; 100(14):5046-5055. PubMed ID: 29369355 [TBL] [Abstract][Full Text] [Related]
7. Application of ozone during grape drying for the production of straw wine. Effects on the microbiota and compositive profile of grapes. Guzzon R; Franciosi E; Moser S; Carafa I; Larcher R J Appl Microbiol; 2018 Aug; 125(2):513-527. PubMed ID: 29624801 [TBL] [Abstract][Full Text] [Related]
8. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
9. Methyl jasmonate and ozone affect the antioxidant system and the quality of wine grape during postharvest partial dehydration. Modesti M; Petriccione M; Forniti R; Zampella L; Scortichini M; Mencarelli F Food Res Int; 2018 Oct; 112():369-377. PubMed ID: 30131148 [TBL] [Abstract][Full Text] [Related]
10. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Botondi R; De Sanctis F; Moscatelli N; Vettraino AM; Catelli C; Mencarelli F Food Chem; 2015 Dec; 188():641-7. PubMed ID: 26041242 [TBL] [Abstract][Full Text] [Related]
11. Using ethanol as postharvest treatment to increase polyphenols and anthocyanins in wine grape. Margherita M; Gianmarco A; Anna M; Roberto F; Serena F; Milena P; Isabella T; Fabio M; Andrea B Heliyon; 2024 Feb; 10(4):e26067. PubMed ID: 38370263 [TBL] [Abstract][Full Text] [Related]
12. Changes in stilbene composition during postharvest ozone treatment of 'Moscato bianco' winegrapes. Río Segade S; Vincenzi S; Giacosa S; Rolle L Food Res Int; 2019 Sep; 123():251-257. PubMed ID: 31284974 [TBL] [Abstract][Full Text] [Related]
13. Ozone Improves the Aromatic Fingerprint of White Grapes. Río Segade S; Vilanova M; Giacosa S; Perrone I; Chitarra W; Pollon M; Torchio F; Boccacci P; Gambino G; Gerbi V; Rolle L Sci Rep; 2017 Nov; 7(1):16301. PubMed ID: 29176676 [TBL] [Abstract][Full Text] [Related]
14. Grapevine as a Rich Source of Polyphenolic Compounds. Šikuten I; Štambuk P; Andabaka Ž; Tomaz I; Marković Z; Stupić D; Maletić E; Kontić JK; Preiner D Molecules; 2020 Nov; 25(23):. PubMed ID: 33260583 [TBL] [Abstract][Full Text] [Related]
15. Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (Vitis vinifera L.). Paissoni MA; Río Segade S; Giacosa S; Torchio F; Cravero F; Englezos V; Rantsiou K; Carboni C; Gerbi V; Teissedre PL; Rolle L Food Res Int; 2017 Aug; 98():68-78. PubMed ID: 28610734 [TBL] [Abstract][Full Text] [Related]
16. Effects of Traditional and Modern Post-Harvest Withering Processes on the Composition of the Tomasi D; Lonardi A; Boscaro D; Nardi T; Marangon CM; De Rosso M; Flamini R; Lovat L; Mian G Molecules; 2021 Aug; 26(17):. PubMed ID: 34500632 [TBL] [Abstract][Full Text] [Related]
17. Changes in Skin Flavanol Composition as a Response to Ozone-Induced Stress during Postharvest Dehydration of Red Wine Grapes with Different Phenolic Profiles. Río Segade S; Bautista-Ortín AB; Paissoni MA; Giacosa S; Gerbi V; Rolle L; Gómez-Plaza E J Agric Food Chem; 2020 Nov; 68(47):13439-13449. PubMed ID: 32975414 [TBL] [Abstract][Full Text] [Related]
18. Pre-processing Cooling of Harvested Grapes Induces Changes in Berry Composition and Metabolism, and Affects Quality and Aroma Traits of the Resulting Wine. Modesti M; Shmuleviz R; Macaluso M; Bianchi A; Venturi F; Brizzolara S; Zinnai A; Tonutti P Front Nutr; 2021; 8():728510. PubMed ID: 34901102 [TBL] [Abstract][Full Text] [Related]
19. Grape polysaccharides: compositional changes in grapes and wines, possible effects on wine organoleptic properties, and practical control during winemaking. Li SY; Duan CQ; Han ZH Crit Rev Food Sci Nutr; 2023; 63(8):1119-1142. PubMed ID: 34342521 [TBL] [Abstract][Full Text] [Related]
20. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays. Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]