These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34945868)

  • 1. Cooling Cycle Optimization for a Vuilleumier Refrigerator.
    Paul R; Khodja A; Fischer A; Hoffmann KH
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Piston Motion for an Alpha-Type Stirling Engine.
    Masser R; Khodja A; Scheunert M; Schwalbe K; Fischer A; Paul R; Hoffmann KH
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power-Optimal Control of a Stirling Engine's Frictional Piston Motion.
    Paul R; Khodja A; Fischer A; Masser R; Hoffmann KH
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal performance of endoreversible quantum refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062124. PubMed ID: 25615061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum efficiency of absorption refrigerators at arbitrary cooling power.
    Ye Z; Holubec V
    Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system.
    Açıkkalp E; Kandemir SY; Ahmadi MH
    J Environ Manage; 2019 Feb; 232():455-461. PubMed ID: 30502614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current fluctuations in quantum absorption refrigerators.
    Segal D
    Phys Rev E; 2018 May; 97(5-1):052145. PubMed ID: 29906995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum refrigerators and the third law of thermodynamics.
    Levy A; Alicki R; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power.
    Holubec V; Ye Z
    Phys Rev E; 2020 May; 101(5-1):052124. PubMed ID: 32575339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston.
    Wu Z; Chen L; Feng H
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical emulation of quantum-coherent thermal machines.
    González JO; Palao JP; Alonso D; Correa LA
    Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal performance of a three-level quantum refrigerator.
    Singh V; Pandit T; Johal RS
    Phys Rev E; 2020 Jun; 101(6-1):062121. PubMed ID: 32688608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles.
    Frim AG; DeWeese MR
    Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.