These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34946113)

  • 1. Isotopic and Chemical Assessment of the Dynamics of Methane Sources and Microbial Cycling during Early Development of an Oil Sands Pit Lake.
    Slater GF; Goad CA; Lindsay MBJ; Mumford KG; Colenbrander Nelson TE; Brady AL; Jessen GL; Warren LA
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal Dynamics of Methanotrophic Bacteria in a Boreal Oil Sands End Pit Lake.
    Albakistani EA; Nwosu FC; Furgason C; Haupt ES; Smirnova AV; Verbeke TJ; Lee ES; Kim JJ; Chan A; Ruhl IA; Sheremet A; Rudderham SB; Lindsay MBJ; Dunfield PF
    Appl Environ Microbiol; 2022 Feb; 88(3):e0145521. PubMed ID: 34818104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study.
    Dompierre KA; Barbour SL
    J Contam Hydrol; 2016 Jun; 189():12-26. PubMed ID: 27061245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ebullition enhances chemical mass transport across the tailings-water interface of oil sands pit lakes.
    Francis DJ; Barbour SL; Lindsay MBJ
    J Contam Hydrol; 2022 Feb; 245():103938. PubMed ID: 34915427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alum Addition Triggers Hypoxia in an Engineered Pit Lake.
    Jessen GL; Chen LX; Mori JF; Nelson TEC; Slater GF; Lindsay MBJ; Banfield JF; Warren LA
    Microorganisms; 2022 Feb; 10(3):. PubMed ID: 35336086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoplankton ecology in the early years of a boreal oil sands end pit lake.
    Furgason CC; Smirnova AV; Dacks JB; Dunfield PF
    Environ Microbiome; 2024 Jan; 19(1):3. PubMed ID: 38217061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating carbon sources driving microbial metabolism during oil sands reclamation.
    Bradford LM; Ziolkowski LA; Goad C; Warren LA; Slater GF
    J Environ Manage; 2017 Mar; 188():246-254. PubMed ID: 27987440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic Estimation of Community Composition and Novel Eukaryotic Lineages in Base Mine Lake: An Oil Sands Tailings Reclamation Site in Northern Alberta.
    Richardson E; Bass D; Smirnova A; Paoli L; Dunfield P; Dacks JB
    J Eukaryot Microbiol; 2020 Jan; 67(1):86-99. PubMed ID: 31432582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake.
    Dompierre KA; Lindsay MB; Cruz-Hernández P; Halferdahl GM
    Sci Total Environ; 2016 Jun; 556():196-206. PubMed ID: 26974568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isomer-specific monitoring of naphthenic acids at an oil sands pit lake by comprehensive two-dimensional gas chromatography-mass spectrometry.
    Bowman DT; Warren LA; Slater GF
    Sci Total Environ; 2020 Dec; 746():140985. PubMed ID: 32739755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chemical fractions from an oil sands end-pit lake on reproduction of fathead minnows.
    Morandi G; Wiseman S; Sun C; Martin JW; Giesy JP
    Chemosphere; 2020 Jun; 249():126073. PubMed ID: 32088464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilms for Turbidity Mitigation in Oil Sands End Pit Lakes.
    Cossey HL; Anwar MN; Kuznetsov PV; Ulrich AC
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic Toxicity of Surface Water from a Canadian Oil Sands End Pit Lake to the Freshwater Invertebrates Chironomus dilutus and Ceriodaphnia dubia.
    White KB; Liber K
    Arch Environ Contam Toxicol; 2020 Apr; 78(3):439-450. PubMed ID: 32077988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction.
    Reid ML; Warren LA
    J Environ Manage; 2016 Jan; 166():321-9. PubMed ID: 26520039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indigenous microorganisms residing in oil sands tailings biodegrade residual bitumen.
    Yu X; Lee K; Ma B; Asiedu E; Ulrich AC
    Chemosphere; 2018 Oct; 209():551-559. PubMed ID: 29945048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.
    Siddique T; Kuznetsov P; Kuznetsova A; Arkell N; Young R; Li C; Guigard S; Underwood E; Foght JM
    Front Microbiol; 2014; 5():106. PubMed ID: 24711805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microbiology of oil sands tailings: past, present, future.
    Foght JM; Gieg LM; Siddique T
    FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28334283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model naphthenic acids removal by microalgae and Base Mine Lake cap water microbial inoculum.
    Yu X; Lee K; Ulrich AC
    Chemosphere; 2019 Nov; 234():796-805. PubMed ID: 31247489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur Biogeochemistry of an Oil Sands Composite Tailings Deposit.
    Warren LA; Kendra KE; Brady AL; Slater GF
    Front Microbiol; 2015; 6():1533. PubMed ID: 26869997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-generation stoichiometric mathematical model to predict methane emissions from oil sands tailings.
    Kong JD; Wang H; Siddique T; Foght J; Semple K; Burkus Z; Lewis MA
    Sci Total Environ; 2019 Dec; 694():133645. PubMed ID: 31400693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.