BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3494634)

  • 1. Electrophysiological responses to bradykinin and microinjected inositol polyphosphates in neuroblastoma cells. Possible role of inositol 1,3,4-trisphosphate in altering membrane potential.
    Tertoolen LG; Tilly BC; Irvine RF; Moolenaar WH
    FEBS Lett; 1987 Apr; 214(2):365-9. PubMed ID: 3494634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bradykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells.
    Higashida H; Streaty RA; Klee W; Nirenberg M
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):942-6. PubMed ID: 3081891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulatory influence of bradykinin and inositol-1,4,5-trisphosphate on the membrane potential in neural cell lines.
    Reiser G; Binmöller FJ; Hamprecht B
    Biomed Biochim Acta; 1987; 46(8-9):S682-7. PubMed ID: 2449200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histamine-induced intracellular free Ca++, inositol phosphates and electrical changes in murine N1E-115 neuroblastoma cells.
    Oakes SG; Iaizzo PA; Richelson E; Powis G
    J Pharmacol Exp Ther; 1988 Oct; 247(1):114-21. PubMed ID: 3262737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol 1,4,5-trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma x rat glioma hybrid cells.
    Brown DA; Higashida H
    J Physiol; 1988 Mar; 397():185-207. PubMed ID: 3261793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-dependent K+ channels in neuroblastoma hybrid cells activated by intracellular inositol trisphosphate and extracellular bradykinin.
    Higashida H; Brown DA
    FEBS Lett; 1988 Oct; 238(2):395-400. PubMed ID: 3262538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine release by bradykinin, inositol 1,4,5-trisphosphate and phorbol dibutyrate in rodent neuroblastoma cells.
    Higashida H
    J Physiol; 1988 Mar; 397():209-22. PubMed ID: 2842493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bradykinin inhibits potassium (M) currents in N1E-115 neuroblastoma cells. Responses resemble those in NG108-15 neuroblastoma x glioma hybrid cells.
    Higashida H; Brown DA
    FEBS Lett; 1987 Aug; 220(2):302-6. PubMed ID: 2440728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microinjection of inositol 1,2-(cyclic)-4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, and inositol 1,4,5-trisphosphate into intact Xenopus oocytes can induce membrane currents independent of extracellular calcium.
    Stith BJ; Proctor WR
    J Cell Biochem; 1989 Jul; 40(3):321-30. PubMed ID: 2550488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Ca2+ release in medaka eggs microinjected with inositol 1,4,5-trisphosphate and Ca2+.
    Iwamatsu T; Yoshimoto Y; Hiramoto Y
    Dev Biol; 1988 Sep; 129(1):191-7. PubMed ID: 2842209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cytosolic free calcium in the generation of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in HL-60 cells. Differential effects of chemotactic peptide receptor stimulation at distinct Ca2+ levels.
    Lew PD; Monod A; Krause KH; Waldvogel FA; Biden TJ; Schlegel W
    J Biol Chem; 1986 Oct; 261(28):13121-7. PubMed ID: 3489712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-activated Ca2+ signaling in mouse lacrimal acinar cells.
    Bird GS; Putney JW
    J Biol Chem; 1996 Mar; 271(12):6766-70. PubMed ID: 8636098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bradykinin evoked depolarization of a novel neuroblastoma x DRG neurone hybrid cell line (ND7/23).
    Dunn PM; Coote PR; Wood JN; Burgess GM; Rang HP
    Brain Res; 1991 Apr; 545(1-2):80-6. PubMed ID: 1650281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inositol 1,4,5-trisphosphate alters bursting pacemaker activity in Aplysia neurons: voltage-clamp analysis of effects on calcium currents.
    Scholz KP; Cleary LJ; Byrne JH
    J Neurophysiol; 1988 Jul; 60(1):86-104. PubMed ID: 3136233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bradykinin-evoked acetylcholine release via inositol trisphosphate-dependent elevation in free calcium in neuroblastoma x glioma hybrid NG108-15 cells.
    Ogura A; Myojo Y; Higashida H
    J Biol Chem; 1990 Feb; 265(6):3577-84. PubMed ID: 2303464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GTP- and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines.
    Chueh SH; Mullaney JM; Ghosh TK; Zachary AL; Gill DL
    J Biol Chem; 1987 Oct; 262(28):13857-64. PubMed ID: 3498720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cholecystokinin-induced Ca2+ shuttle from the inositol trisphosphate-sensitive and ATP-dependent pool, and initial pepsinogen release connected with cytoskeleton of the chief cell.
    Tsunoda Y
    Biochim Biophys Acta; 1987 Jul; 901(1):35-51. PubMed ID: 3109480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High calcium and other divalent cations increase inositol trisphosphate in bovine parathyroid cells.
    Shoback DM; Membreno LA; McGhee JG
    Endocrinology; 1988 Jul; 123(1):382-9. PubMed ID: 3260174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inositol 1,4,5-trisphosphate induced calcium release from corn coleoptile microsomes.
    Reddy AS; Poovaiah BW
    J Biochem; 1987 Mar; 101(3):569-73. PubMed ID: 3496330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of bradykinin-induced inositol trisphosphate release in a novel neuroblastoma x dorsal root ganglion sensory neuron cell line (F-11).
    Francel PC; Miller RJ; Dawson G
    J Neurochem; 1987 May; 48(5):1632-9. PubMed ID: 3494104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.