These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34946522)

  • 41. Role of TiO
    Skoupá V; Jeništová A; Setnička V; Matějka P
    Langmuir; 2019 Apr; 35(13):4540-4547. PubMed ID: 30840826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gold-decorated titania nanotube arrays as dual-functional platform for surface-enhanced Raman spectroscopy and surface-assisted laser desorption/ionization mass spectrometry.
    Nitta S; Yamamoto A; Kurita M; Arakawa R; Kawasaki H
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8387-95. PubMed ID: 24731133
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface enhanced Raman spectroscopy of self-assembled layers of lipid molecules on nanostructured Au and Ag substrates.
    Slekiene N; Ramanauskaite L; Snitka V
    Chem Phys Lipids; 2017 Mar; 203():12-18. PubMed ID: 28069393
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A stable and plug-and-play aluminium/titanium dioxide/metal-organic framework/silver composite sheet for sensitive Raman detection and photocatalytic removal of 4-aminothiophenol.
    Chen Q; Qin L; Shi C; Kang SZ; Li X
    Chemosphere; 2021 Nov; 282():131000. PubMed ID: 34111640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
    Gopinath A; Boriskina SV; Reinhard BM; Dal Negro L
    Opt Express; 2009 Mar; 17(5):3741-53. PubMed ID: 19259215
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flexible and Transparent Substrates Based on Gold Nanoparticles and TiO
    Mandrile L; Giovannozzi AM; Sacco A; Martra G; Rossi AM
    Biosensors (Basel); 2019 Dec; 9(4):. PubMed ID: 31861199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface-enhanced Raman spectroscopy-active substrates: adapting the shape of plasmonic nanoparticles for different biological applications.
    Vitol EA; Friedman G; Gogotsi Y
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3046-51. PubMed ID: 24734732
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sub-100 nm anisotropic gold nanoparticles as surface-enhanced Raman spectroscopy substrates.
    Boote BW; Ferreira RA; Jang W; Byun H; Kim JH
    Nanotechnology; 2015 Aug; 26(34):345701. PubMed ID: 26235352
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recyclable Ag-Deposited TiO
    Yang W; Tang J; Ou Q; Yan X; Liu L; Liu Y
    ACS Omega; 2021 Oct; 6(41):27271-27278. PubMed ID: 34693147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spaced TiO
    Ozkan S; Yoo J; Nguyen NT; Mohajernia S; Zazpe R; Prikryl J; Macak JM; Schmuki P
    ChemistryOpen; 2018 Oct; 7(10):797-802. PubMed ID: 30302303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications.
    Fu Y; Mo A
    Nanoscale Res Lett; 2018 Jun; 13(1):187. PubMed ID: 29956033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mesoporous plasmonic nanocomposites based on Au/Ag-TiO
    Sadrieyeh S; Malekfar R
    Appl Opt; 2018 Dec; 57(36):10510-10516. PubMed ID: 30645398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes.
    Liu Y; Tian H; Chen X; Liu W; Xia K; Huang J; de la Chapelle ML; Huang G; Zhang Y; Fu W
    Mikrochim Acta; 2020 Feb; 187(3):160. PubMed ID: 32040773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
    Ranjan M; Facsko S
    Nanotechnology; 2012 Dec; 23(48):485307. PubMed ID: 23128982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications.
    Khlebtsov NG; Lin L; Khlebtsov BN; Ye J
    Theranostics; 2020; 10(5):2067-2094. PubMed ID: 32089735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate.
    Zhang J; Fan T; Zhang X; Lai C; Zhu Y
    Appl Opt; 2014 Feb; 53(6):1159-65. PubMed ID: 24663316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO
    Zhou W; Yin BC; Ye BC
    Biosens Bioelectron; 2017 Jan; 87():187-194. PubMed ID: 27551999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.