BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34946584)

  • 21. Effect of roasting on the formation of chlorogenic acid lactones in coffee.
    Farah A; de Paulis T; Trugo LC; Martin PR
    J Agric Food Chem; 2005 Mar; 53(5):1505-13. PubMed ID: 15740032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of asparaginase for acrylamide mitigation in coffee and its influence on the content of caffeine, chlorogenic acid, and caffeic acid.
    Corrêa CLO; das Merces Penha E; Dos Anjos MR; Pacheco S; Freitas-Silva O; Luna AS; Gottschalk LMF
    Food Chem; 2021 Feb; 338():128045. PubMed ID: 33091987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking?
    Ludwig IA; Mena P; Calani L; Cid C; Del Rio D; Lean ME; Crozier A
    Food Funct; 2014 Aug; 5(8):1718-26. PubMed ID: 25014672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous roasting and extraction of green coffee beans by pressurized liquid extraction.
    Xu JL; Kim TJ; Kim JK; Choi Y
    Food Chem; 2019 May; 281():261-268. PubMed ID: 30658756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting.
    Dybkowska E; Sadowska A; Rakowska R; Dębowska M; Świderski F; Świąder K
    Rocz Panstw Zakl Hig; 2017; 68(4):347-353. PubMed ID: 29265388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nature of phenolic compounds in coffee melanoidins.
    Coelho C; Ribeiro M; Cruz AC; Domingues MR; Coimbra MA; Bunzel M; Nunes FM
    J Agric Food Chem; 2014 Aug; 62(31):7843-53. PubMed ID: 24998624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of volatile and nonvolatile compounds in decaffeinated and regular coffee prepared under various roasting conditions.
    Park H; Noh E; Kim M; Lee KG
    Food Chem; 2024 Mar; 435():137543. PubMed ID: 37742465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions between volatile and nonvolatile coffee components. 1. Screening of nonvolatile components.
    Charles-Bernard M; Kraehenbuehl K; Rytz A; Roberts DD
    J Agric Food Chem; 2005 Jun; 53(11):4417-25. PubMed ID: 15913304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies.
    Jaiswal R; Matei MF; Golon A; Witt M; Kuhnert N
    Food Funct; 2012 Sep; 3(9):976-84. PubMed ID: 22833076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting.
    Hečimović I; Belščak-Cvitanović A; Horžić D; Komes D
    Food Chem; 2011 Dec; 129(3):991-1000. PubMed ID: 25212328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Green coffee VS dietary supplements: A comparative analysis of bioactive compounds and antioxidant activity.
    Brzezicha J; Błażejewicz D; Brzezińska J; Grembecka M
    Food Chem Toxicol; 2021 Sep; 155():112377. PubMed ID: 34197879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of high performance liquid chromatography to the analysis of some non-volatile coffee components.
    Trugo LC; Macrae R
    Arch Latinoam Nutr; 1989 Mar; 39(1):96-107. PubMed ID: 2487024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coffee variety, origin and extraction procedure: Implications for coffee beneficial effects on human health.
    Ciaramelli C; Palmioli A; Airoldi C
    Food Chem; 2019 Apr; 278():47-55. PubMed ID: 30583399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute effects of light and dark roasted coffee on glucose tolerance: a randomized, controlled crossover trial in healthy volunteers.
    Rakvaag E; Dragsted LO
    Eur J Nutr; 2016 Oct; 55(7):2221-30. PubMed ID: 26342706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discriminate analysis of roasted coffee varieties for trigonelline, nicotinic acid, and caffeine content.
    Casal S; Oliveira MB; Alves MR; Ferreira MA
    J Agric Food Chem; 2000 Aug; 48(8):3420-4. PubMed ID: 10956127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: influence of technological factors.
    Alves RC; Costa AS; Jerez M; Casal S; Sineiro J; Núñez MJ; Oliveira B
    J Agric Food Chem; 2010 Dec; 58(23):12221-9. PubMed ID: 21070017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of maturation and roasting on the quality and chemical composition of new conilon coffee cultivar by chemometrics.
    de Souza Costa AM; Lirio Soares K; de Souza Silveira L; Carlos Verdin Filho A; Louzada Pereira L; Moreira Osório V; Fronza M; Scherer R
    Food Res Int; 2024 Jan; 176():113791. PubMed ID: 38163705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trigonelline in coffee. II. Content of green, roasted and instant coffee.
    Stennert A; Maier HG
    Z Lebensm Unters Forsch; 1994 Sep; 199(3):198-200. PubMed ID: 7975906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shifting of Physicochemical and Biological Characteristics of Coffee Roasting Under Ultrasound-Assisted Extraction.
    Duangjai A; Saokaew S; Goh BH; Phisalprapa P
    Front Nutr; 2021; 8():724591. PubMed ID: 34490333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of benzopyrene and acrylamide in roasted coffee beans by corona discharge plasma jet (CDPJ) and its effects on biochemical and sensory properties.
    Lee T; Park H; Puligundla P; Koh GH; Yoon J; Mok C
    Food Chem; 2020 Oct; 328():127117. PubMed ID: 32474240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.