These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34946783)

  • 1. Dragon Fruit Foliage: An Agricultural Cellulosic Source to Extract Cellulose Nanomaterials.
    Anh TPT; Nguyen TV; Hoang PT; Thi PV; Kim TN; Van QN; Van CN; Hai YD
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficiation of cactus fruit waste seeds for the production of cellulose nanostructures: Extraction and properties.
    Ait Benhamou A; Kassab Z; Boussetta A; Salim MH; Ablouh EH; Nadifiyine M; Qaiss AEK; Moubarik A; El Achaby M
    Int J Biol Macromol; 2022 Apr; 203():302-311. PubMed ID: 35104469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of nanocrystalline cellulose from Acacia mangium and its reinforcement potential.
    Jasmani L; Adnan S
    Carbohydr Polym; 2017 Apr; 161():166-171. PubMed ID: 28189225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses.
    Prado KS; Spinacé MAS
    Int J Biol Macromol; 2019 Feb; 122():410-416. PubMed ID: 30385342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile extraction and characterization of cellulose nanocrystals from agricultural waste sugarcane straw.
    Lu S; Ma T; Hu X; Zhao J; Liao X; Song Y; Hu X
    J Sci Food Agric; 2022 Jan; 102(1):312-321. PubMed ID: 34096072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superfine pulverisation pretreatment to enhance crystallinity of cellulose from Lycium barbarum L. leaves.
    Song P; Zhou F; Li F; Han Z; Wang L; Xu J; Zhang B; Wang M; Fan J; Zhang B
    Carbohydr Polym; 2021 Feb; 253():117207. PubMed ID: 33278976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW; Lee HV
    Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: Response surface methodology.
    Chen YW; Lee HV; Abd Hamid SB
    Carbohydr Polym; 2017 Dec; 178():57-68. PubMed ID: 29050615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment.
    Xiao Y; Liu Y; Wang X; Li M; Lei H; Xu H
    Int J Biol Macromol; 2019 Nov; 140():225-233. PubMed ID: 31437495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication.
    Khan MN; Rehman N; Sharif A; Ahmed E; Farooqi ZH; Din MI
    Int J Biol Macromol; 2020 Jun; 153():72-78. PubMed ID: 32135259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A correlation on ultrasonication with nanocrystalline cellulose characteristics.
    Mohd Ishak NA; Khalil I; Abdullah FZ; Muhd Julkapli N
    Carbohydr Polym; 2020 Oct; 246():116553. PubMed ID: 32747237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid.
    Liu Y; Wang H; Yu G; Yu Q; Li B; Mu X
    Carbohydr Polym; 2014 Sep; 110():415-22. PubMed ID: 24906774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems.
    Kassab Z; Syafri E; Tamraoui Y; Hannache H; Qaiss AEK; El Achaby M
    Int J Biol Macromol; 2020 Jul; 154():1419-1425. PubMed ID: 31733239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective.
    Le Normand M; Moriana R; Ek M
    Carbohydr Polym; 2014 Oct; 111():979-87. PubMed ID: 25037439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system.
    Chen YW; Hasanulbasori MA; Chiat PF; Lee HV
    Int J Biol Macromol; 2019 Feb; 123():1305-1319. PubMed ID: 30292586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of cellulose nanocrystals from Humulus japonicus stem and the influence of high temperature pretreatment.
    Jiang Y; Zhou J; Zhang Q; Zhao G; Heng L; Chen D; Liu D
    Carbohydr Polym; 2017 May; 164():284-293. PubMed ID: 28325327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and isolation method of Gigantochloa scortechinii (Buluh Semantan) cellulose nanocrystals.
    Ibrahim NI; Sultan MTH; Łukaszewicz A; Shah AUM; Shahar FS; Józwik J; Najeeb MI; Grzejda R
    Int J Biol Macromol; 2024 Jun; 272(Pt 1):132847. PubMed ID: 38834115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State of Art Manufacturing and Producing Nanocellulose from Agricultural Waste: A Review.
    Kaur M; Sharma P; Kumari S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3394-3403. PubMed ID: 34739796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.