BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34946888)

  • 1. Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo.
    Clarke AM; Huffines AK; Edwards YJK; Petit CM; Schneider DA
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946888
    [No Abstract]   [Full Text] [Related]  

  • 2. Rate of transcription elongation and sequence-specific pausing by RNA polymerase I directly influence rRNA processing.
    Huffines AK; Engel KL; French SL; Zhang Y; Viktorovskaya OV; Schneider DA
    J Biol Chem; 2022 Dec; 298(12):102730. PubMed ID: 36423683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I.
    Clarke AM; Engel KL; Giles KE; Petit CM; Schneider DA
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11633-E11641. PubMed ID: 30482860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downstream sequence-dependent RNA cleavage and pausing by RNA polymerase I.
    Scull CE; Clarke AM; Lucius AL; Schneider DA
    J Biol Chem; 2020 Jan; 295(5):1288-1299. PubMed ID: 31843971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II.
    Goetze H; Wittner M; Hamperl S; Hondele M; Merz K; Stoeckl U; Griesenbeck J
    Mol Cell Biol; 2010 Apr; 30(8):2028-45. PubMed ID: 20154141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Paf1 complex is required for efficient transcription elongation by RNA polymerase I.
    Zhang Y; Sikes ML; Beyer AL; Schneider DA
    Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2153-8. PubMed ID: 19164765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ccr4-not regulates RNA polymerase I transcription and couples nutrient signaling to the control of ribosomal RNA biogenesis.
    Laribee RN; Hosni-Ahmed A; Workman JJ; Chen H
    PLoS Genet; 2015 Mar; 11(3):e1005113. PubMed ID: 25815716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SWI/SNF chromatin remodeling complex influences transcription by RNA polymerase I in Saccharomyces cerevisiae.
    Zhang Y; Anderson SJ; French SL; Sikes ML; Viktorovskaya OV; Huband J; Holcomb K; Hartman JL; Beyer AL; Schneider DA
    PLoS One; 2013; 8(2):e56793. PubMed ID: 23437238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo.
    Merkl P; Perez-Fernandez J; Pilsl M; Reiter A; Williams L; Gerber J; Böhm M; Deutzmann R; Griesenbeck J; Milkereit P; Tschochner H
    Mol Cell Biol; 2014 Oct; 34(20):3817-27. PubMed ID: 25092870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Transcription Factor THO Promotes Transcription Initiation and Elongation by RNA Polymerase I.
    Zhang Y; French SL; Beyer AL; Schneider DA
    J Biol Chem; 2016 Feb; 291(6):3010-8. PubMed ID: 26663077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation.
    Scull CE; Lucius AL; Schneider DA
    Biophys J; 2021 May; 120(10):1883-1893. PubMed ID: 33737158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae.
    Kang JJ; Yokoi TJ; Holland MJ
    J Biol Chem; 1995 Dec; 270(48):28723-32. PubMed ID: 7499394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits.
    Schwank K; Schmid C; Fremter T; Engel C; Milkereit P; Griesenbeck J; Tschochner H
    Biol Chem; 2023 Oct; 404(11-12):979-1002. PubMed ID: 37823775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Structures of Transcribing RNA Polymerase I.
    Tafur L; Sadian Y; Hoffmann NA; Jakobi AJ; Wetzel R; Hagen WJH; Sachse C; Müller CW
    Mol Cell; 2016 Dec; 64(6):1135-1143. PubMed ID: 27867008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis.
    Zhang Y; Smith AD; Renfrow MB; Schneider DA
    J Biol Chem; 2010 May; 285(19):14152-9. PubMed ID: 20299458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hmo1 Promotes Efficient Transcription Elongation by RNA Polymerase I in
    Huffines AK; Schneider DA
    Genes (Basel); 2024 Feb; 15(2):. PubMed ID: 38397236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I.
    Braglia P; Kawauchi J; Proudfoot NJ
    Nucleic Acids Res; 2011 Mar; 39(4):1439-48. PubMed ID: 20972219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae.
    Thota SG; Unnikannan CP; Thampatty SR; Manorama R; Bhandari R
    Biochem J; 2015 Feb; 466(1):105-14. PubMed ID: 25423617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination.
    Kawauchi J; Mischo H; Braglia P; Rondon A; Proudfoot NJ
    Genes Dev; 2008 Apr; 22(8):1082-92. PubMed ID: 18413718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequences within the spacer region of yeast rRNA cistrons that stimulate 35S rRNA synthesis in vivo mediate RNA polymerase I-dependent promoter and terminator activities.
    Mestel R; Yip M; Holland JP; Wang E; Kang J; Holland MJ
    Mol Cell Biol; 1989 Mar; 9(3):1243-54. PubMed ID: 2657388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.