These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34946946)

  • 61. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase.
    Zou L; Stillman B
    Mol Cell Biol; 2000 May; 20(9):3086-96. PubMed ID: 10757793
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae.
    Kamimura Y; Tak YS; Sugino A; Araki H
    EMBO J; 2001 Apr; 20(8):2097-107. PubMed ID: 11296242
    [TBL] [Abstract][Full Text] [Related]  

  • 63. RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins.
    Mayan MD
    PLoS One; 2013; 8(1):e53405. PubMed ID: 23308214
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Origin replication complex binding, nucleosome depletion patterns, and a primary sequence motif can predict origins of replication in a genome with epigenetic centromeres.
    Tsai HJ; Baller JA; Liachko I; Koren A; Burrack LS; Hickman MA; Thevandavakkam MA; Rusche LN; Berman J
    mBio; 2014 Sep; 5(5):e01703-14. PubMed ID: 25182328
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading.
    Jares P; Blow JJ
    Genes Dev; 2000 Jun; 14(12):1528-40. PubMed ID: 10859170
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency.
    Li Y; Xue B; Zhang M; Zhang L; Hou Y; Qin Y; Long H; Su QP; Wang Y; Guan X; Jin Y; Cao Y; Li G; Sun Y
    Genome Biol; 2021 Jul; 22(1):206. PubMed ID: 34253239
    [TBL] [Abstract][Full Text] [Related]  

  • 67. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation.
    Feng Y; Vlassis A; Roques C; Lalonde ME; González-Aguilera C; Lambert JP; Lee SB; Zhao X; Alabert C; Johansen JV; Paquet E; Yang XJ; Gingras AC; Côté J; Groth A
    EMBO J; 2016 Jan; 35(2):176-92. PubMed ID: 26620551
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase alpha facilitates DNA replication.
    Zhou Y; Wang TS
    Mol Cell Biol; 2004 Nov; 24(21):9568-79. PubMed ID: 15485923
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence.
    Matson JP; House AM; Grant GD; Wu H; Perez J; Cook JG
    J Cell Biol; 2019 Jul; 218(7):2169-2184. PubMed ID: 31186278
    [TBL] [Abstract][Full Text] [Related]  

  • 70. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state.
    Dahmann C; Diffley JF; Nasmyth KA
    Curr Biol; 1995 Nov; 5(11):1257-69. PubMed ID: 8574583
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chromatin remodeling in DNA replication.
    Falbo KB; Shen X
    J Cell Biochem; 2006 Mar; 97(4):684-9. PubMed ID: 16365876
    [TBL] [Abstract][Full Text] [Related]  

  • 72. How dormant origins promote complete genome replication.
    Blow JJ; Ge XQ; Jackson DA
    Trends Biochem Sci; 2011 Aug; 36(8):405-14. PubMed ID: 21641805
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome.
    Peace JM; Ter-Zakarian A; Aparicio OM
    PLoS One; 2014; 9(5):e98501. PubMed ID: 24879017
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enabling association of the GINS protein tetramer with the mini chromosome maintenance (Mcm)2-7 protein complex by phosphorylated Sld2 protein and single-stranded origin DNA.
    Bruck I; Kanter DM; Kaplan DL
    J Biol Chem; 2011 Oct; 286(42):36414-26. PubMed ID: 21868389
    [TBL] [Abstract][Full Text] [Related]  

  • 75. RecQL4 tethering on the pre-replicative complex induces unscheduled origin activation and replication stress in human cells.
    Shin G; Jeong D; Kim H; Im JS; Lee JK
    J Biol Chem; 2019 Nov; 294(44):16255-16265. PubMed ID: 31519754
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell cycle-dependent changes in H3K56ac in human cells.
    Stejskal S; Stepka K; Tesarova L; Stejskal K; Matejkova M; Simara P; Zdrahal Z; Koutna I
    Cell Cycle; 2015; 14(24):3851-63. PubMed ID: 26645646
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dpb11 protein helps control assembly of the Cdc45·Mcm2-7·GINS replication fork helicase.
    Dhingra N; Bruck I; Smith S; Ning B; Kaplan DL
    J Biol Chem; 2015 Mar; 290(12):7586-601. PubMed ID: 25659432
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Insights into the Initiation of Eukaryotic DNA Replication.
    Bruck I; Perez-Arnaiz P; Colbert MK; Kaplan DL
    Nucleus; 2015; 6(6):449-54. PubMed ID: 26710261
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism.
    Li H; O'Donnell ME
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29405332
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The interaction networks of the budding yeast and human DNA replication-initiation proteins.
    Wu R; Amin A; Wang Z; Huang Y; Man-Hei Cheung M; Yu Z; Yang W; Liang C
    Cell Cycle; 2019; 18(6-7):723-741. PubMed ID: 30890025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.