BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34947076)

  • 1. Inactivation of
    Li L; Xu N; Chen F
    J Fungi (Basel); 2021 Dec; 7(12):. PubMed ID: 34947076
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of
    Li L; Chen F
    J Fungi (Basel); 2020 Aug; 6(3):. PubMed ID: 32872515
    [No Abstract]   [Full Text] [Related]  

  • 3. Construction of gene modification system with highly efficient and markerless for
    Xu N; Li L; Chen F
    Front Microbiol; 2022; 13():952323. PubMed ID: 35979480
    [No Abstract]   [Full Text] [Related]  

  • 4. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7.
    Liu Q; Xie N; He Y; Wang L; Shao Y; Zhao H; Chen F
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):285-96. PubMed ID: 24162083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Static Magnetic Field on
    Yang S; Zhou H; Dai W; Xiong J; Chen F
    J Fungi (Basel); 2021 Mar; 7(4):. PubMed ID: 33808107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.
    Wang L; Dai Y; Chen W; Shao Y; Chen F
    J Agric Food Chem; 2016 Dec; 64(50):9506-9514. PubMed ID: 27998068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone deacetylase MrHos3 negatively regulates the production of citrinin and pigments in Monascus ruber.
    Liu Q; Zheng Y; Liu B; Tang F; Shao Y
    J Basic Microbiol; 2023 Oct; 63(10):1128-1138. PubMed ID: 37236161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7.
    He Y; Liu Q; Shao Y; Chen F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4965-76. PubMed ID: 23546425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7.
    Liu J; Zhou Y; Yi T; Zhao M; Xie N; Lei M; Liu Q; Shao Y; Chen F
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7037-49. PubMed ID: 26946170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Mga1, a G-protein alpha-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7.
    Li L; Shao Y; Li Q; Yang S; Chen F
    FEMS Microbiol Lett; 2010 Jul; 308(2):108-14. PubMed ID: 20500530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfigured Morphology and Ameliorated Production of Six
    Virk MS; Ramzan R; Virk MA; Yuan X; Chen F
    Microorganisms; 2020 Jan; 8(1):. PubMed ID: 31936171
    [No Abstract]   [Full Text] [Related]  

  • 12. [Identification of a pigment-polyketide synthase gene deleted mutant of Monascus ruber M7].
    Xie N; Zhang Y; Chen F
    Wei Sheng Wu Xue Bao; 2015 Jul; 55(7):863-72. PubMed ID: 26710605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of MrEsa1 accelerated growth, increased ascospores yield, and the polyketide production in Monascus ruber.
    Zhang J; Shao Y; Chen F
    J Basic Microbiol; 2023 Jun; 63(6):668-677. PubMed ID: 36760018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism.
    Liu Q; Cai L; Shao Y; Zhou Y; Li M; Wang X; Chen F
    Fungal Biol; 2016 Mar; 120(3):297-305. PubMed ID: 26895858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Different G-Protein α-Subunits on Growth, Development and Secondary Metabolism of
    Lei M; Liu J; Fang Y; Shao Y; Li L; Yu JH; Chen F
    Front Microbiol; 2019; 10():1555. PubMed ID: 31354659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into selenium biofortification and the selenite metabolic mechanism of Monascus ruber M7.
    Zhu L; Long P; Hu M; Wang L; Shao Y; Cheng S; Dong X; He Y
    Food Chem; 2024 May; 455():139740. PubMed ID: 38843715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient gene targeting in ligase IV-deficient Monascus ruber M7 by perturbing the non-homologous end joining pathway.
    He Y; Shao Y; Chen F
    Fungal Biol; 2014; 118(9-10):846-54. PubMed ID: 25209642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mrhst4 gene, coding for NAD+-dependent deacetylase is involved in citrinin production of Monascus ruber.
    Hu Y; Zheng Y; Liu B; Gong Y; Shao Y
    J Appl Microbiol; 2023 Mar; 134(3):. PubMed ID: 36849138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.
    Li YP; Tang X; Wu W; Xu Y; Huang ZB; He QH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):577-83. PubMed ID: 25482072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1.
    Liang B; Du X; Li P; Guo H; Sun C; Gao J; Wang S
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7281-7292. PubMed ID: 28831532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.