These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34947137)
21. Response Surface Methods Used for Optimization of Abrasive Waterjet Machining of the Stainless Steel X2 CrNiMo 17-12-2. Deaconescu A; Deaconescu T Materials (Basel); 2021 May; 14(10):. PubMed ID: 34064660 [TBL] [Abstract][Full Text] [Related]
22. Multi-Response Optimization of Abrasive Waterjet Machining of Ti6Al4V Using Integrated Approach of Utilized Heat Transfer Search Algorithm and RSM. Fuse K; Chaudhari R; Vora J; Patel VK; de Lacalle LNL Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947337 [TBL] [Abstract][Full Text] [Related]
23. Surface Topography Analysis of Mg-Based Composites with Different Nanoparticle Contents Disintegrated Using Abrasive Water Jet. Mardi KB; Dixit AR; Pramanik A; Hvizdos P; Mallick A; Nag A; Hloch S Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639869 [TBL] [Abstract][Full Text] [Related]
24. Investigation of cutting quality and surface roughness in abrasive water jet machining of bone. Shakouri E; Abbasi M Proc Inst Mech Eng H; 2018 Sep; 232(9):850-861. PubMed ID: 30052115 [TBL] [Abstract][Full Text] [Related]
25. Stochastic simplified modelling of abrasive waterjet footprints. Torrubia PL; Billingham J; Axinte DA Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150836. PubMed ID: 27118905 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the Depth and Width of Cuts after Controlled-Depth Abrasive Water Jet Machining Using Low Pressure. Botko F; Botkova D; Gelatko M; Vandzura R; Klichova D Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138676 [TBL] [Abstract][Full Text] [Related]
27. Investigation of Significant Parameters during Abrasive Waterjet Turning. Štefek A; Raška J; Hlaváč LM; Spadło S Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442911 [TBL] [Abstract][Full Text] [Related]
28. Effect of silicon carbide on kerf convergence and irregularity of the surface during abrasive water jet machining of fiber-metal hybrid composites. Selvam R; Subramanian M; Diviya M; Khan TMY; Baig RU; Ahamad T; Kalam MA; Razak A; Monish N; Wodajo AW Sci Rep; 2023 Oct; 13(1):17391. PubMed ID: 37833365 [TBL] [Abstract][Full Text] [Related]
29. Assessment of the Influence of Selected Technological Parameters on the Morphology Parameters of the Cutting Surfaces of the Hardox 500 Material Cut by Abrasive Water Jet Technology. Krenicky T; Olejarova S; Servatka M Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207922 [TBL] [Abstract][Full Text] [Related]
30. Waterjet cutting of periprosthetic interface tissue in loosened hip prostheses: an in vitro feasibility study. Kraaij G; Tuijthof GJ; Dankelman J; Nelissen RG; Valstar ER Med Eng Phys; 2015 Feb; 37(2):245-50. PubMed ID: 25619611 [TBL] [Abstract][Full Text] [Related]
31. Impact of Preparation of Titanium Alloys on Their Abrasive Water Jet Machining. Štefek A; Tyč M Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947362 [TBL] [Abstract][Full Text] [Related]
33. Intelligent Modeling and Multi-Response Optimization of AWJC on Fiber Intermetallic Laminates through a Hybrid ANFIS-Salp Swarm Algorithm. Siva Kumar M; Rajamani D; El-Sherbeeny AM; Balasubramanian E; Karthik K; Hussein HMA; Astarita A Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295284 [TBL] [Abstract][Full Text] [Related]
34. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material. Valíček J; Harničárová M; Öchsner A; Hutyrová Z; Kušnerová M; Tozan H; Michenka V; Šepelák V; Mitaľ D; Zajac J Materials (Basel); 2015 Nov; 8(11):7401-7422. PubMed ID: 28793645 [TBL] [Abstract][Full Text] [Related]
35. Modelling the Kerf Angle, Roughness and Waviness of the Surface of Inconel 718 in an Abrasive Water Jet Cutting Process. Płodzień M; Żyłka Ł; Żak K; Wojciechowski S Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569993 [TBL] [Abstract][Full Text] [Related]
36. Research into the Disintegration of Abrasive Materials in the Abrasive Water Jet Machining Process. Perec A Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300859 [TBL] [Abstract][Full Text] [Related]
37. Ultrasonic-Vibration-Assisted Waterjet Drilling of [0/45/-45/90] Liao Y; Liu X; Zhao C; Wang B; Zheng L; Hao X; Yao L; Wang D Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138378 [TBL] [Abstract][Full Text] [Related]
38. Machining of bone: Analysis of cutting force and surface roughness by turning process. Noordin MY; Jiawkok N; Ndaruhadi PY; Kurniawan D Proc Inst Mech Eng H; 2015 Nov; 229(11):761-8. PubMed ID: 26399875 [TBL] [Abstract][Full Text] [Related]
39. Influence of Steel Structure on Machinability by Abrasive Water Jet. Hlaváčová IM; Sadílek M; Váňová P; Szumilo Š; Tyč M Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027923 [TBL] [Abstract][Full Text] [Related]
40. Analysis of Several Physical Phenomena Measured on the Metallic Materials Cut by Abrasive Water Jets (AWJ). Gřunděl J; Hlaváč LM; Pětroš P; Gembalová L Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]