These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 34947243)
1. Probing the Use of Silane-Grafted Fumed Silica Nanoparticles to Produce Stable Transformer Oil-Based Nanofluids. Qureshi MI; Qureshi B Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947243 [TBL] [Abstract][Full Text] [Related]
2. Effects of Plasma Treated Alumina Nanoparticles on Breakdown Strength, Partial Discharge Resistance, and Thermophysical Properties of Mineral Oil-Based Nanofluids. Saman NM; Zakaria IH; Ahmad MH; Abdul-Malek Z Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203364 [TBL] [Abstract][Full Text] [Related]
3. Experimental investigation of zinc ferrite/insulation oil nanofluid natural convection heat transfer, AC dielectric breakdown voltage, and thermophysical properties. Pourpasha H; Zeinali Heris S; Javadpour R; Mohammadpourfard M; Li Y Sci Rep; 2024 Sep; 14(1):20721. PubMed ID: 39237610 [TBL] [Abstract][Full Text] [Related]
5. Effect of Conducting, Semi-Conducting and Insulating Nanoparticles on AC Breakdown Voltage and Partial Discharge Activity of Synthetic Ester: A Statistical Analysis. Khelifa H; Beroual A; Vagnon E Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745444 [TBL] [Abstract][Full Text] [Related]
6. Breakdown Performance and Partial Discharge Development in Transformer Oil-Based Metal Carbide Nanofluids. Koutras KN; Tegopoulos SN; Charalampakos VP; Kyritsis A; Gonos IF; Pyrgioti EC Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055285 [TBL] [Abstract][Full Text] [Related]
7. Influence of Emerging Semiconductive Nanoparticles on AC Dielectric Strength of Synthetic Ester Midel-7131 Insulating Oil. Fasehullah M; Wang F; Jamil S; Bhutta MS Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806813 [TBL] [Abstract][Full Text] [Related]
8. Effect of Microwave Irradiation on the Dielectric Characteristics of Semi-Conductive Nanoparticle-Based Nanofluids: Progress towards the Microwave Synthesis. Raja S; Koperundevi G; Eswaran M Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374779 [TBL] [Abstract][Full Text] [Related]
9. Numerical Study on Alternating Current Breakdown Mechanism Between Sphere-Sphere Electrodes in Transformer Oil-Based Magnetic Nanofluids. Lee WH; Lee JC J Nanosci Nanotechnol; 2018 Sep; 18(9):6629-6634. PubMed ID: 29677848 [TBL] [Abstract][Full Text] [Related]
10. Effect of Dispersion Method on Stability and Dielectric Strength of Transformer Oil-Based TiO Lv YZ; Li C; Sun Q; Huang M; Li CR; Qi B Nanoscale Res Lett; 2016 Dec; 11(1):515. PubMed ID: 27882530 [TBL] [Abstract][Full Text] [Related]
11. Investigation of CeO Rahman O; Ali A; Hussain A; Khan SA; Tariq M; Urooj S; Mihet-Popa L; Khan Q Heliyon; 2023 Sep; 9(9):e19264. PubMed ID: 37662719 [TBL] [Abstract][Full Text] [Related]
12. Systematical study of multi-walled carbon nanotube nanofluids based disposed transformer oil. Suhaimi NS; Md Din MF; Ishak MT; Abdul Rahman AR; Mohd Ariffin M; Hashim N'; Wang J Sci Rep; 2020 Dec; 10(1):20984. PubMed ID: 33268816 [TBL] [Abstract][Full Text] [Related]
13. The effect of a novel silane blend system on resin bond strength to silica-coated Ti substrate. Matinlinna JP; Lassila LV; Vallittu PK J Dent; 2006 Aug; 34(7):436-43. PubMed ID: 16310302 [TBL] [Abstract][Full Text] [Related]
14. Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity. Zhou Y; Wu X; Zhong X; Sun W; Pu H; Zhao JX ACS Appl Mater Interfaces; 2019 Dec; 11(49):45763-45775. PubMed ID: 31729855 [TBL] [Abstract][Full Text] [Related]
15. Role of Phase-Dependent Dielectric Properties of Alumina Nanoparticles in Electromagnetic-Assisted Enhanced Oil Recovery. Adil M; Lee KC; Zaid HM; Manaka T Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33036153 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the Stability of Dielectric Nanofluids for Use in Transformers under Real Operating Conditions. Primo VA; Pérez-Rosa D; García B; Cabanelas JC Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678033 [TBL] [Abstract][Full Text] [Related]
17. A Novel Experimental Study on the Rheological Properties and Thermal Conductivity of Halloysite Nanofluids. Le Ba T; Alkurdi AQ; Lukács IE; Molnár J; Wongwises S; Gróf G; Szilágyi IM Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937934 [TBL] [Abstract][Full Text] [Related]
18. Comparative Study of Carbon Nanosphere and Carbon Nanopowder on Viscosity and Thermal Conductivity of Nanofluids. Ba TL; Bohus M; Lukács IE; Wongwises S; Gróf G; Hernadi K; Szilágyi IM Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33671055 [TBL] [Abstract][Full Text] [Related]
19. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects. Kumar RS; Goswami R; Chaturvedi KR; Sharma T Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498 [TBL] [Abstract][Full Text] [Related]
20. Effect of TiO Fernández I; Valiente R; Ortiz F; Renedo CJ; Ortiz A Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32268581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]