These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34947320)

  • 1. Impact of Chitosan on Water Stability and Wettability of Soils.
    Adamczuk A; Kercheva M; Hristova M; Jozefaciuk G
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Chitosan on the Mechanical Stability of Soils.
    Adamczuk A; Jozefaciuk G
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Different Minerals on Water Stability and Wettability of Soil Silt Aggregates.
    Adamczuk A; Gryta A; Skic K; Boguta P; Jozefaciuk G
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils.
    Quyum A; Achari G; Goodman RH
    Sci Total Environ; 2002 Sep; 296(1-3):77-87. PubMed ID: 12398328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Historical Nitrogen Deposition and Straw Addition Facilitate the Resistance of Soil Multifunctionality to Drying-Wetting Cycles.
    Luo G; Wang T; Li K; Li L; Zhang J; Guo S; Ling N; Shen Q
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30737352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability characteristics and structural evolution of compacted loess under different dry densities and wetting-drying cycles.
    Yuan KZ; Ni WK; Lü XF; Wang XJ
    PLoS One; 2021; 16(6):e0253508. PubMed ID: 34181695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation and correlation between water retention capacity and gas permeability of compacted loess overburden during wetting-drying cycles.
    Kong D; Wu T; Xu H; Jiang P; Zhou A; Lv Y
    Environ Res; 2024 Jul; 252(Pt 2):118895. PubMed ID: 38604483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field quantification of wetting-drying cycles to predict temporal changes of soil pore size distribution.
    Bodner G; Scholl P; Kaul HP
    Soil Tillage Res; 2013 Oct; 133():1-9. PubMed ID: 26766881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Durability against Wetting-Drying Cycles of Sustainable Biopolymer-Treated Soil.
    Soldo A; Miletic M
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drying-wetting cycles consistently increase net nitrogen mineralization in 25 agricultural soils across intensity and number of drying-wetting cycles.
    Lu T; Wang Y; Zhu H; Wei X; Shao M
    Sci Total Environ; 2020 Mar; 710():135574. PubMed ID: 31787285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of wetting-drying cycle on hydraulic and mechanical properties of cemented paste backfill of the recycled solid wastes.
    Ma D; Kong S; Li Z; Zhang Q; Wang Z; Zhou Z
    Chemosphere; 2021 Nov; 282():131163. PubMed ID: 34470177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand.
    Govindarajan D; Deshpande AP; Raghunathan R
    J Contam Hydrol; 2018 Feb; 209():1-13. PubMed ID: 29329939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].
    Li JL; Jiang CS; Hao QJ
    Huan Jing Ke Xue; 2014 Dec; 35(12):4695-704. PubMed ID: 25826943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of freeze-thaw cycles on aggregate stability of black soil].
    Jin WP; Fan HM; Liu B; Jiang YZ; Jiang Y; Ma RM
    Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4195-4201. PubMed ID: 31840465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of Soil Aggregation along the Weathering Gradient: Comparison of Grain Size Distribution under Different Disruptive Forces.
    Wei Y; Wu X; Xia J; Shen X; Cai C
    PLoS One; 2016; 11(8):e0160960. PubMed ID: 27529618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of particle size on droplet infiltration into hydrophobic porous media as a model of water repellent soil.
    Hamlett CA; Shirtcliffe NJ; McHale G; Ahn S; Bryant R; Doerr SH; Newton MI
    Environ Sci Technol; 2011 Nov; 45(22):9666-70. PubMed ID: 22011323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of drying and wetting cycles on
    Teramage MT; Carasco L; Coppin F
    J Environ Radioact; 2019 Jul; 203():93-97. PubMed ID: 30877904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-scale redistribution of water during wetting of air-dried soils as studied by low-field NMR relaxometry.
    Todoruk TR; Langford CH; Kantzas A
    Environ Sci Technol; 2003 Jun; 37(12):2707-13. PubMed ID: 12854709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Particle Size Distribution and Moisture Variation on Mechanical Strength of Biopolymer-Treated Soil.
    Fatehi H; Ong DEL; Yu J; Chang I
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.