These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34947357)

  • 1. Laser Melting Deposition Additive Manufacturing of Ti6Al4V Biomedical Alloy: Mesoscopic In-Situ Flow Field Mapping via Computational Fluid Dynamics and Analytical Modelling with Empirical Testing.
    Mahmood MA; Ur Rehman A; Pitir F; Salamci MU; Mihailescu IN
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation.
    Ur Rehman A; Mahmood MA; Pitir F; Salamci MU; Popescu AC; Mihailescu IN
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L.
    Ur Rehman A; Pitir F; Salamci MU
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components.
    Skalon M; Meier B; Leitner T; Arneitz S; Amancio-Filho ST; Sommitsch C
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy.
    Shen H; Yan J; Niu X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V.
    Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Effective Laser Energy on the Structure and Mechanical Properties of Laser Melting Deposited Ti6Al4V Alloy.
    Fu D; Li X; Zhang M; Wang M; Zhang Z; Qu S
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing.
    Zhang Z; Zhang T; Sun C; Karna S; Yuan L
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches.
    Ansari MJ; Nguyen DS; Park HS
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscopic Simulation of Core-Shell Composite Powder Materials by Selective Laser Melting.
    Bao T; Tan Y; Xu Y
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Simulation Study of Multi-Field Coupling for Laser Cladding of Shaft Parts.
    Zhao C; Ma C; Yang J; Li M; Zhao Q; Ma H; Jia X
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition.
    Wang X; Zhang LJ; Ning J; Na SJ
    3D Print Addit Manuf; 2023 Aug; 10(4):661-673. PubMed ID: 37609583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting.
    Ao X; Liu J; Xia H; Yang Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short Time Correlation Analysis of Melt Pool Behavior in Laser Metal Deposition Using Coaxial Optical Monitoring.
    Zavalov YN; Dubrov AV
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing.
    Leung CLA; Marussi S; Atwood RC; Towrie M; Withers PJ; Lee PD
    Nat Commun; 2018 Apr; 9(1):1355. PubMed ID: 29636443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Influence of Shielding Gases on Laser Metal Deposition of Inconel 718 Superalloy.
    Ruiz JE; Cortina M; Arrizubieta JI; Lamikiz A
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion.
    Baldi N; Giorgetti A; Palladino M; Giovannetti I; Arcidiacono G; Citti P
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation and Experimental Study on Residual Stress in the Curved Surface Forming of 12CrNi2 Alloy Steel by Laser Melting Deposition.
    Cui Z; Hu X; Dong S; Yan S; Zhao X
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32998235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method.
    Singh SN; Chowdhury S; Nirsanametla Y; Deepati AK; Prakash C; Singh S; Wu LY; Zheng HY; Pruncu C
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Latent Heat of Fusion on the Melt Pool Shape and Size in the Direct Laser Deposition Process.
    Turichin G; Mukin D; Valdaytseva E; Sannikov M
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.