These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34947452)

  • 1. Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure.
    Zvirko O; Tsyrulnyk O; Lipiec S; Dzioba I
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel.
    Kyriakopoulou HP; Karmiris-Obratański P; Tazedakis AS; Daniolos NM; Dourdounis EC; Manolakos DE; Pantelis D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32325971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Operational Degradation of Pipeline Steels.
    Nykyforchyn H; Zvirko O; Dzioba I; Krechkovska H; Hredil M; Tsyrulnyk O; Student O; Lipiec S; Pala R
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Thermal Treatment on SCC and HE Susceptibility of Supermartensitic Stainless Steel 16Cr5NiMo.
    Bacchi L; Biagini F; Corsinovi S; Romanelli M; Villa M; Valentini R
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32252282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack-Tip Opening Displacement of Girth Welds in a Lean X70 Pipeline Steel.
    Li J; Yu P; Saini N; Li L
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.
    Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B
    Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels.
    Ishtiaq M; Inam A; Tiwari S; Seol JB
    Appl Microsc; 2022 Oct; 52(1):10. PubMed ID: 36264393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of
    Cabrini M; Sinigaglia E; Spinelli C; Tarenzi M; Testa C; Bolzoni FM
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Corrosion Resistance and Hardness Properties of Carbon Steel through Modification of Microstructure.
    Handoko W; Pahlevani F; Sahajwalla V
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30487430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Embrittlement Behavior of API X70 Linepipe Steel under Ex Situ and In Situ Hydrogen Charging.
    Oh DK; Kim SG; Shin SH; Hwang B
    Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Approach of Nanostructured Bainitic Steels' Production with Improved Toughness and Strength.
    Kirbiš P; Anžel I; Rudolf R; Brunčko M
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the Role of Acicular Ferrite Carbides in Cleavage Fracture Crack Initiation for Two Medium Carbon Microalloyed Steels.
    Jovanović G; Glišić D; Dikić S; Međo B; Marković B; Vuković N; Radović N
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Nickel on the Microstructure, Mechanical Properties and Corrosion Properties of Niobium-Vanadium Microalloyed Powder Metallurgy Steels.
    Ahssi MAM; Erden MA; Acarer M; Çuğ H
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32927896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure, Mechanical Properties, and Corrosion Behavior of Ultra-Low Carbon Bainite Steel with Different Niobium Content.
    Zong Y; Liu CM
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33435347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embrittlement Mechanisms of HR3C Pipe Steel at Room Temperature in Ultra-Supercritical Unit.
    Liu X; Cao X; Zhang Z
    Nanomaterials (Basel); 2024 Feb; 14(3):. PubMed ID: 38334577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments.
    Trautmann A; Mori G; Oberndorfer M; Bauer S; Holzer C; Dittmann C
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Interaction between a Steel Microstructure and Hydrogen.
    Depover T; Laureys A; Pérez Escobar D; Van den Eeckhout E; Wallaert E; Verbeken K
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29710803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel.
    Kim SG; Kim JY; Hwang B
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Positive Role of Nanometric Molybdenum-Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels.
    Peral LB; Fernández-Pariente I; Colombo C; Rodríguez C; Belzunce J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels.
    Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.