These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34947459)

  • 1. Brittleness of Concrete under Different Curing Conditions.
    Zhang S; Han B; Xie H; An M; Lyu S
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of Fracture Toughness in Concretes Containing Fly Ash and Silica Fume in the First 28 Days of Curing.
    Golewski GL; Gil DM
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33435437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume Deformation of Steam-Cured Concrete with Slag during and after Steam Curing.
    Han X; Fu H; Li G; Tian L; Pan C; Chen C; Wang P
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33801671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Impact of Fly Ash on the Strength and Micro-Structure of Concrete during Steam Curing and Subsequent Stages.
    Duan Y; Wang Q; Long Z; Wang X
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the Fracture Toughness under Mode II Loading of Low Calcium Fly Ash (LCFA) Concrete Depending on Ages.
    Golewski GL
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33228252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of the Effects of Raw Material Compositions and Steam Curing Regimes on the Performance and Microstructure of Precast Concrete.
    Zhou Y; Zhan Y; Zhu M; Wang S; Liu J; Ning N
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early-Age Strength of Ultra-High Performance Concrete in Various Curing Conditions.
    Park JS; Kim YJ; Cho JR; Jeon SJ
    Materials (Basel); 2015 Aug; 8(8):5537-5553. PubMed ID: 28793522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexural Tensile Strength of Concrete with Synthetic Fibers.
    Blazy J; Drobiec Ł; Wolka P
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Steam-Curing Regime for Recycled Aggregate Concrete Incorporating High Early Strength Cement-A Parametric Study.
    Hanif A; Kim Y; Usman M; Park C
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Curing Regime on the Mechanical Strength, Hydration, and Microstructure of Ecological Ultrahigh-Performance Concrete (EUHPC).
    Zuo Z; Zhang J; Li B; Shen C; Xin G; Chen X
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash.
    Golewski GL
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29211029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Time-Dependent Effect in Ultra High-Performance Concrete According to the Curing Methods.
    Lim K; Kim K; Koh K; Ryu G
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early-Age Performance Analysis of Sludge Water Incorporation in High-Temperature Steam Cured Green High-Performance Concrete.
    Qi B
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behaviour of rubberised concrete with waste clay brick powder under varying curing conditions.
    Sinkhonde D; Onchiri RO; Oyawa WO; Mwero JN
    Heliyon; 2023 Feb; 9(2):e13372. PubMed ID: 36820024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships among the Characteristic Tensile Strain, Curing Age, and Strength of Reactive Powder Concrete.
    Guo M; Gao R
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and Fracture Parameters of Ultra-High Performance Fiber Reinforcement Concrete Cured via Steam and Water: Optimization of Binder Content.
    Mala AA; Sherwani AFH; Younis KH; Faraj RH; Mosavi A
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33923740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-Reliability Probability Damage Assessment of GFRP Bars Embedded in Steam-Curing Concrete Beams Based on the Multiple Factors Related Moisture Absorption Model.
    Zhang K; Yang W; Li H; Tang Z; Wu W; Yuan J; Feng Z
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture Performance of Cementitious Composites Based on Quaternary Blended Cements.
    Golewski GL
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selected Strength Properties of Coal Bottom Ash (CBA) Concrete Containing Fly Ash under Different Curing and Drying Conditions.
    Park JH; Bui QT; Jung SH; Yang IH
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Heat and Moisture Transport in Steam-Cured Mortar: Application to Aashto Type Vi Beams.
    Hernández-Bautista E; Sandoval-Torres S; de J Cano-Barrita PF; Bentz DP
    Constr Build Mater; 2017 Oct; 151():186-195. PubMed ID: 28860680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.