These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34947539)

  • 1. Preparation and Fluorescent Wavelength Control of Multi-Color Nitrogen-Doped Carbon Nano-Dots.
    Li W; Tang J; Li Y; Bai H; Zhang W; Zhang J; Xiao Y; Xu W
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Doping Heteroatoms on the Optical Behaviors and Radical Scavenging Properties of Carbon Nanodots.
    Azami M; Wei J; Valizadehderakhshan M; Jayapalan A; Ayodele OO; Nowlin K
    J Phys Chem C Nanomater Interfaces; 2023 Apr; 127(15):7360-7370. PubMed ID: 37113457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot green hydrothermal synthesis of fluorescent nitrogen-doped carbon nanodots for in vivo bioimaging.
    Kuo TR; Sung SY; Hsu CW; Chang CJ; Chiu TC; Hu CC
    Anal Bioanal Chem; 2016 Jan; 408(1):77-82. PubMed ID: 26514673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room Temperature Phosphorescence of Chlorine Doped Carbon Nitride Dots.
    Patir K; Gogoi SK
    Front Chem; 2022; 10():812602. PubMed ID: 35372269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye.
    Jahan S; Mansoor F; Naz S; Lei J; Kanwal S
    Anal Chem; 2013 Nov; 85(21):10232-9. PubMed ID: 24083490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation.
    Zeng Z; Zhang W; Arvapalli DM; Bloom B; Sheardy A; Mabe T; Liu Y; Ji Z; Chevva H; Waldeck DH; Wei J
    Phys Chem Chem Phys; 2017 Aug; 19(30):20101-20109. PubMed ID: 28726895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile approach for sulphur and nitrogen co-doped carbon nanodots to improve photothermal eradication of drug-resistant bacteria.
    Liu X; Liu H; Wang Y; Zheng X; Xu H; Ding J; Sun J; Jiang T; Li Q; Liu Y
    Biochem Biophys Res Commun; 2023 Sep; 671():301-308. PubMed ID: 37327701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of ultrahigh fluorescence N,S-self-doped carbon nanodots and their multiple applications for H
    Du F; Guo Z; Cheng Z; Kremer M; Shuang S; Liu Y; Dong C
    Nanoscale; 2020 Oct; 12(39):20482-20490. PubMed ID: 33026004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the Crystallite Size of Spherulites in PEO-Based Polymer Nanocomposites Mediated by Carbon Nanodots and Ag Nanoparticles.
    Abdullah RM; Aziz SB; Mamand SM; Hassan AQ; Hussein SA; Kadir MFZ
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31181863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of fluorescent carbon dots by B/P doping and application for Co
    Li C; Li N; Yang L; Liu L; Zhang D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123824. PubMed ID: 38176192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Ablated Carbon Nanodots for Light Emission.
    Reyes D; Camacho M; Camacho M; Mayorga M; Weathers D; Salamo G; Wang Z; Neogi A
    Nanoscale Res Lett; 2016 Dec; 11(1):424. PubMed ID: 27659953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-Arginine Doped Carbon Nanodots from Cinnamon Bark for Improved Fluorescent Yeast Cell Imaging.
    Lad UM; Dave DJ; Desai BN; Suthar DH; Modi CK
    J Fluoresc; 2024 Jun; ():. PubMed ID: 38869708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier.
    Durantie E; Barosova H; Drasler B; Rodriguez-Lorenzo L; Urban DA; Vanhecke D; Septiadi D; Hirschi-Ackermann L; Petri-Fink A; Rothen-Rutishauser B
    Biointerphases; 2018 Sep; 13(6):06D404. PubMed ID: 30205690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon nanodots.
    Yang P; Zhao J; Zhang L; Li L; Zhu Z
    Chemistry; 2015 Jun; 21(23):8561-8. PubMed ID: 25925432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-color carbon dots for white light-emitting diodes.
    Su R; Guan Q; Cai W; Yang W; Xu Q; Guo Y; Zhang L; Fei L; Xu M
    RSC Adv; 2019 Mar; 9(17):9700-9708. PubMed ID: 35520699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarity-dependent emission from hydroxyl-free carbon nanodots.
    Kanwal S; Mansoor F; Tu D; Li R; Zheng W; Lu S; Chen X
    Nanoscale; 2022 Sep; 14(36):13059-13065. PubMed ID: 36053169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-Ultraviolet Emissive Carbon Nanodots.
    Song SY; Liu KK; Wei JY; Lou Q; Shang Y; Shan CX
    Nano Lett; 2019 Aug; 19(8):5553-5561. PubMed ID: 31276414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Optical Characteristics of PVA:C-Dot Composites: Tuning the Absorption of Ultra Violet (UV) Region.
    Aziz SB; Hassan AQ; Mohammed SJ; Karim WO; Kadir MFZ; Tajuddin HA; Chan NNMY
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30736346
    [No Abstract]   [Full Text] [Related]  

  • 19. Preparation of N-doped carbon dots and application to enhanced photosynthesis.
    Lv J; Yang W; Miao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122763. PubMed ID: 37098316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the Elemental Composition of Precursors from Amino Acids and Their Binary Mixtures on the Photoluminescent Intensity of Carbon Nanodots.
    Morita K; Kurusu S; Kodama H; Hirayama N
    Anal Sci; 2017; 33(12):1461-1464. PubMed ID: 29225241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.