These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34947555)

  • 1. One-Step Solution Deposition of Antimony Selenoiodide Films via Precursor Engineering for Lead-Free Solar Cell Applications.
    Choi YC; Jung KW
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Stable Antimony Selenoiodide Solar Cells.
    Nie R; Hu M; Risqi AM; Li Z; Seok SI
    Adv Sci (Weinh); 2021 Apr; 8(8):2003172. PubMed ID: 33898173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sonochemical growth of nanomaterials in carbon nanotube.
    Jesionek M; Nowak M; Mistewicz K; Kępińska M; Stróż D; Bednarczyk I; Paszkiewicz R
    Ultrasonics; 2018 Feb; 83():179-187. PubMed ID: 28347509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key Factors Affecting the Performance of Sb2S3-sensitized Solar Cells During an Sb2S3 Deposition via SbCl3-thiourea Complex Solution-processing.
    Choi YC; Seok SI; Hwang E; Kim DH
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in Fabrication of Antimony/Bismuth Chalcohalides for Lead-Free Solar Cell Applications.
    Choi YC; Jung KW
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33218079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous-Solution-Based Approach Towards Carbon-Free Sb
    Li S; Zhang Y; Tang R; Wang X; Zhang T; Jiang G; Liu W; Zhu C; Chen T
    ChemSusChem; 2018 Sep; 11(18):3208-3214. PubMed ID: 30048042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonochemical growth of antimony selenoiodide in multiwalled carbon nanotube.
    Jesionek M; Nowak M; Szperlich P; Stróż D; Szala J; Jesionek K; Rzychoń T
    Ultrason Sonochem; 2012 Jan; 19(1):179-85. PubMed ID: 21752690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Study of the Transition from Antimony Oxide to Antimony Sulfide in the Hydrothermal Process to Obtain Highly Efficient Solar Cells.
    Zhang L; Xiao P; Che B; Yang J; Cai Z; Wang H; Gao J; Liang W; Wu C; Chen T
    ChemSusChem; 2023 Apr; 16(7):e202202049. PubMed ID: 36628923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Growth of BiSI Nanorod-Based Films Through a Two-Step Solution Process for Solar Cell Applications.
    Choi YC; Hwang E
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31757098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead-Free Antimony-Based Light-Emitting Diodes through the Vapor-Anion-Exchange Method.
    Singh A; Chiu NC; Boopathi KM; Lu YJ; Mohapatra A; Li G; Chen YF; Guo TF; Chu CW
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35088-35094. PubMed ID: 31462035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Hydrothermal Deposition of Antimony Triselenide Films for Efficient Planar Heterojunction Solar Cells.
    Liu D; Tang R; Ma Y; Jiang C; Lian W; Li G; Han W; Zhu C; Chen T
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18856-18864. PubMed ID: 33871973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling CH3NH3PbI(3-x)Cl(x) Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells.
    Liu D; Wu L; Li C; Ren S; Zhang J; Li W; Feng L
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16330-7. PubMed ID: 26154760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonochemical preparation of SbSeI gel.
    Nowak M; Kauch B; Szperlich P; Jesionek M; Kepińska M; Bober Ł; Szala J; Moskal G; Rzychoń T; Stróz D
    Ultrason Sonochem; 2009 Apr; 16(4):546-51. PubMed ID: 19217339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisolvent with an Ultrawide Processing Window for the One-Step Fabrication of Efficient and Large-Area Perovskite Solar Cells.
    Zhao P; Kim BJ; Ren X; Lee DG; Bang GJ; Jeon JB; Kim WB; Jung HS
    Adv Mater; 2018 Dec; 30(49):e1802763. PubMed ID: 30306647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.
    Cho JW; Ismail A; Park SJ; Kim W; Yoon S; Min BK
    ACS Appl Mater Interfaces; 2013 May; 5(10):4162-5. PubMed ID: 23611655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process.
    Caño I; Navarro-Güell A; Maggi E; Barrio M; Tamarit JL; Svatek S; Antolín E; Yan S; Barrena E; Galiana B; Placidi M; Puigdollers J; Saucedo E
    J Mater Chem A Mater; 2023 Aug; 11(33):17616-17627. PubMed ID: 38013931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent Engineering of the Precursor Solution toward Large-Area Production of Perovskite Solar Cells.
    Chao L; Niu T; Gao W; Ran C; Song L; Chen Y; Huang W
    Adv Mater; 2021 Apr; 33(14):e2005410. PubMed ID: 33656209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.
    Chu VB; Cho JW; Park SJ; Hwang YJ; Park HK; Do YR; Min BK
    Nanotechnology; 2014 Mar; 25(12):125401. PubMed ID: 24569126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.
    Wen X; Chen C; Lu S; Li K; Kondrotas R; Zhao Y; Chen W; Gao L; Wang C; Zhang J; Niu G; Tang J
    Nat Commun; 2018 Jun; 9(1):2179. PubMed ID: 29872054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cost Antimony Selenosulfide with Tunable Bandgap for Highly Efficient Solar Cells.
    Dong J; Liu H; Cao Z; Liu Y; Bai Y; Chen M; Liu B; Wu L; Luo J; Zhang Y; Liu SF
    Small; 2023 Mar; 19(9):e2206175. PubMed ID: 36534834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.