These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34947572)
1. New Insights on the Nickel State Deposited by Hydrazine Wet-Chemical Synthesis Route in the Ni/BCY15 Proton-Conducting SOFC Anode. Nikolova D; Gabrovska M; Raikova G; Mladenova E; Vladikova D; Kostov KL; Karakirova Y Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947572 [TBL] [Abstract][Full Text] [Related]
2. Environmentally Benign pSOFC for Emissions-Free Energy: Assessment of Nickel Network Resistance in Anodic Ni/BCY15 Nanocatalyst. Gabrovska M; Nikolova D; Kolev H; Karashanova D; Tzvetkov P; Burdin B; Mladenova E; Vladikova D; Tabakova T Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299684 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration. Li M; Hua B; Luo JL; Jiang SP; Pu J; Chi B; Li J ACS Appl Mater Interfaces; 2016 Apr; 8(16):10293-301. PubMed ID: 27052726 [TBL] [Abstract][Full Text] [Related]
4. Performance of a Direct Methane Solid Oxide Fuel Cell Using Nickel-Ceria-Yttria Stabilized Zirconia as the Anode. Escudero MJ; Yeste MP; Cauqui MÁ; Muñoz MÁ Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012909 [TBL] [Abstract][Full Text] [Related]
5. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells. Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells. Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559 [TBL] [Abstract][Full Text] [Related]
7. Multiple Effects of Iron and Nickel Additives on the Properties of Proton Conducting Yttrium-Doped Barium Cerate-Zirconate Electrolytes for High-Performance Solid Oxide Fuel Cells. Liu Z; Chen M; Zhou M; Cao D; Liu P; Wang W; Liu M; Huang J; Shao J; Liu J ACS Appl Mater Interfaces; 2020 Nov; 12(45):50433-50445. PubMed ID: 33108727 [TBL] [Abstract][Full Text] [Related]
8. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode. Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993 [TBL] [Abstract][Full Text] [Related]
9. A redox-stable efficient anode for solid-oxide fuel cells. Tao S; Irvine JT Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533 [TBL] [Abstract][Full Text] [Related]
10. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode. Fu XZ; Lin JY; Xu S; Luo JL; Chuang KT; Sanger AR; Krzywicki A Phys Chem Chem Phys; 2011 Nov; 13(43):19615-23. PubMed ID: 21984357 [TBL] [Abstract][Full Text] [Related]
11. A Self-Crystallized Nanofibrous Ni-GDC Anode by Magnetron Sputtering for Low-Temperature Solid Oxide Fuel Cells. Ryu S; Hwang J; Jeong W; Yu W; Lee S; Kim K; Zheng C; Lee YH; Cha SW ACS Appl Mater Interfaces; 2023 Mar; 15(9):11845-11852. PubMed ID: 36823788 [TBL] [Abstract][Full Text] [Related]
12. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
13. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells. Guo T; Dong X; Shirolkar MM; Song X; Wang M; Zhang L; Li M; Wang H ACS Appl Mater Interfaces; 2014 Sep; 6(18):16131-9. PubMed ID: 25162913 [TBL] [Abstract][Full Text] [Related]
14. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells. Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379 [TBL] [Abstract][Full Text] [Related]
15. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells. Kim JY; Kim JH; Choi HW; Kim KH; Park SJ J Nanosci Nanotechnol; 2014 Aug; 14(8):6399-403. PubMed ID: 25936125 [TBL] [Abstract][Full Text] [Related]
16. The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode. Li Y; Luo ZY; Yu CJ; Luo D; Xu ZA; Cen KF J Zhejiang Univ Sci B; 2005 Nov; 6(11):1124-9. PubMed ID: 16252348 [TBL] [Abstract][Full Text] [Related]
17. Improvement in SOFC anode performance by finely-structured Ni/YSZ cermet prepared via heterocoagulation. Sunagawa Y; Yamamoto K; Muramatsu A J Phys Chem B; 2006 Mar; 110(12):6224-8. PubMed ID: 16553437 [TBL] [Abstract][Full Text] [Related]
18. Superstructure formation and variation in Ni-GDC cermet anodes in SOFC. Li ZP; Mori T; Auchterlonie GJ; Zou J; Drennan J Phys Chem Chem Phys; 2011 May; 13(20):9685-90. PubMed ID: 21494741 [TBL] [Abstract][Full Text] [Related]
19. Effect of calcination temperature on the properties of Ti/SnO Lei X; Li L; Chen Y; Hu Y Environ Sci Pollut Res Int; 2018 Apr; 25(12):11683-11693. PubMed ID: 29442304 [TBL] [Abstract][Full Text] [Related]
20. Oxidation stages of Ni electrodes in solid oxide fuel cell environments. El Gabaly F; McCarty KF; Bluhm H; McDaniel AH Phys Chem Chem Phys; 2013 Jun; 15(21):8334-41. PubMed ID: 23615670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]