These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34947656)

  • 1. In Situ Assembly of Nanomaterials and Molecules for the Signal Enhancement of Electrochemical Biosensors.
    Chang Y; Xia N; Huang Y; Sun Z; Liu L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease Biosensor by Conversion of a Homogeneous Assay into a Surface-Tethered Electrochemical Analysis Based on Streptavidin-Biotin Interactions.
    Xia N; Sun Z; Ding F; Wang Y; Sun W; Liu L
    ACS Sens; 2021 Mar; 6(3):1166-1173. PubMed ID: 33480678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Sensitive Biosensors Based on Biomolecules and Functional Nanomaterials Depending on the Types of Nanomaterials: A Perspective Review.
    Yoon J; Shin M; Lee T; Choi JW
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.
    Jia X; Dong S; Wang E
    Biosens Bioelectron; 2016 Feb; 76():80-90. PubMed ID: 26001888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification.
    Liu L; Chang Y; Xia N; Peng P; Zhang L; Jiang M; Zhang J; Liu L
    Biosens Bioelectron; 2017 Aug; 94():235-242. PubMed ID: 28285201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis.
    Liu L; Deng D; Wu D; Hou W; Wang L; Li N; Sun Z
    Anal Chim Acta; 2021 Mar; 1149():338199. PubMed ID: 33551055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bispyrene-Based Self-Assembled Nanomaterials: In Vivo Self-Assembly, Transformation, and Biomedical Effects.
    He PP; Li XD; Wang L; Wang H
    Acc Chem Res; 2019 Feb; 52(2):367-378. PubMed ID: 30653298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications.
    Chiorcea-Paquim AM; Eritja R; Oliveira-Brett AM
    J Nucleic Acids; 2018; 2018():5307106. PubMed ID: 29666699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the Self-Assembly of Biomolecules into Functional Nanomaterials through Internal Interactions and External Stimulations: A Review.
    Wang L; Gong C; Yuan X; Wei G
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled biotin-phenylalanine nanoparticles for the signal amplification of surface plasmon resonance biosensors.
    Sun T; Zhang Y; Zhao F; Xia N; Liu L
    Mikrochim Acta; 2020 Jul; 187(8):473. PubMed ID: 32728802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Nanomaterial-Based Electrochemical Biosensors for Cancer Biomarkers: A Review.
    Wang B; Akiba U; Anzai JI
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28672780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in Nanomaterials-Based Enzyme and Aptamer Biosensor for the Detection of Organophosphorus Pesticides.
    Tan X; Yu C; Tang J; Wu W; Yang Q; Hou X
    Crit Rev Anal Chem; 2024; 54(2):247-268. PubMed ID: 35549956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles.
    Tan LH; Xing H; Lu Y
    Acc Chem Res; 2014 Jun; 47(6):1881-90. PubMed ID: 24871359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Recent Development of Hybridization Chain Reaction Strategies in Biosensors.
    Zhang C; Chen J; Sun R; Huang Z; Luo Z; Zhou C; Wu M; Duan Y; Li Y
    ACS Sens; 2020 Oct; 5(10):2977-3000. PubMed ID: 32945653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates.
    Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J
    Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review.
    Huang F; Zhang Y; Lin J; Liu Y
    Biosensors (Basel); 2021 Jun; 11(6):. PubMed ID: 34207580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-responsive structural switching for nucleic acid-based sensors.
    Li D; Song S; Fan C
    Acc Chem Res; 2010 May; 43(5):631-41. PubMed ID: 20222738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamically designed target-specific DNA probe as an electrochemical hybridization biosensor.
    Can F; Ökten HE; Ergön-Can T; Ergenekon P; Özkan M; Erhan E
    Bioelectrochemistry; 2020 Oct; 135():107553. PubMed ID: 32442773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Biosensing Systems Based on Various Nanomaterials as Signal Transducers.
    Lee J; Adegoke O; Park EY
    Biotechnol J; 2019 Jan; 14(1):e1800249. PubMed ID: 30117715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.