These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 34947661)
1. Numerical Study on Broadband Antireflection of Moth-Eye Nanostructured Polymer Film with Flexible Polyethylene Terephthalate Substrate. Lan J; Yang Y; Hu S Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947661 [TBL] [Abstract][Full Text] [Related]
2. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection. Zhang C; Yi P; Peng L; Ni J Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259 [TBL] [Abstract][Full Text] [Related]
3. Spectrally selective antireflection of nanoimprint lithography-formed 3D spherical structures on film coated with a silver layer. Chiou AH; Chang CW; Ting CJ Sci Rep; 2022 Nov; 12(1):19505. PubMed ID: 36376439 [TBL] [Abstract][Full Text] [Related]
4. Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF Yoo GY; Nurrosyid N; Lee S; Jeong Y; Yoon I; Kim C; Kim W; Jang SY; Do YR ACS Appl Mater Interfaces; 2020 Mar; 12(9):10626-10636. PubMed ID: 32030970 [TBL] [Abstract][Full Text] [Related]
5. Numerical Study on Overcoming the Light-Harvesting Limitation of Lead-Free Cs Seo KH; Biswas S; Eun J; Kim H; Bae JH Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063687 [TBL] [Abstract][Full Text] [Related]
6. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. Ji S; Song K; Nguyen TB; Kim N; Lim H ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953 [TBL] [Abstract][Full Text] [Related]
7. Plasma-Polymer-Fluorocarbon Thin Film Coated Nanostructured-Polyethylene Terephthalate Surface with Highly Durable Superhydrophobic and Antireflective Properties. Cho E; Kim M; Park JS; Lee SJ Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32370004 [TBL] [Abstract][Full Text] [Related]
8. Nanostructured Hybrid-Material Transparent Surface with Antireflection Properties and a Facile Fabrication Process. Rombaut J; Fernandez M; Mazumder P; Pruneri V ACS Omega; 2019 Nov; 4(22):19840-19846. PubMed ID: 31788616 [TBL] [Abstract][Full Text] [Related]
9. Polymer-coated moth-eye hybrid structure for broadband antireflection in the terahertz region. Yu X; Goto K; Yasunaga Y; Soeda J; Ono S Opt Lett; 2021 Aug; 46(15):3761-3764. PubMed ID: 34329275 [TBL] [Abstract][Full Text] [Related]
10. Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics. Zhong S; Zeng Y; Huang Z; Shen W Sci Rep; 2015 Mar; 5():8915. PubMed ID: 25746848 [TBL] [Abstract][Full Text] [Related]
11. Rational Design and Construction of Well-Organized Macro-Mesoporous SiO Jin B; He J; Yao L; Zhang Y; Li J ACS Appl Mater Interfaces; 2017 May; 9(20):17466-17475. PubMed ID: 28492300 [TBL] [Abstract][Full Text] [Related]
12. Nanopatterned Polymer Molds Using Anodized Aluminum Templates for Anti-Reflective Coatings. Lim SH; Ly NH; Lee JA; Kim JE; La SW; Huong VT; Tran TG; Ho NT; Noh SM; Son SJ; Joo SW Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641158 [TBL] [Abstract][Full Text] [Related]
13. Large-Scale Moth-Eye-Structured Roll Mold Fabrication Using Sputtered Glassy Carbon Layer and Transferred Moth-Eye Film Characterization. Kato K; Sugawara H; Taniguchi J Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242008 [TBL] [Abstract][Full Text] [Related]
14. Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference. Yang Q; Zhang XA; Bagal A; Guo W; Chang CH Nanotechnology; 2013 Jun; 24(23):235202. PubMed ID: 23676429 [TBL] [Abstract][Full Text] [Related]
15. Single Layer Broadband Anti-Reflective Coatings for Plastic Substrates Produced by Full Wafer and Roll-to-Roll Step-and-Flash Nano-Imprint Lithography. Burghoorn M; Roosen-Melsen D; de Riet J; Sabik S; Vroon Z; Yakimets I; Buskens P Materials (Basel); 2013 Aug; 6(9):3710-3726. PubMed ID: 28788301 [TBL] [Abstract][Full Text] [Related]
16. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns. Galeotti F; Trespidi F; Timò G; Pasini M ACS Appl Mater Interfaces; 2014 Apr; 6(8):5827-34. PubMed ID: 24670669 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712 [TBL] [Abstract][Full Text] [Related]
18. Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings. Chen J; Wang B; Yang Y; Shi Y; Xu G; Cui P Appl Opt; 2012 Oct; 51(28):6839-43. PubMed ID: 23033100 [TBL] [Abstract][Full Text] [Related]
19. Scalable Production of Mechanically Robust Antireflection Film for Omnidirectional Enhanced Flexible Thin Film Solar Cells. Wang M; Ma P; Yin M; Lu L; Lin Y; Chen X; Jia W; Cao X; Chang P; Li D Adv Sci (Weinh); 2017 Sep; 4(9):1700079. PubMed ID: 28932667 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Polymeric Antireflection Film Manufactured by Anodic Aluminum Oxide Template on Dye-Sensitized Solar Cells. Tsai JK; Tu YS Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]