These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34947661)

  • 21. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells.
    Rahman A; Ashraf A; Xin H; Tong X; Sutter P; Eisaman MD; Black CT
    Nat Commun; 2015 Jan; 6():5963. PubMed ID: 25607887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and configuration development of silicon nitride sub-wavelength structures for solar cell application.
    Sahoo KC; Chang EY; Li Y; Lin MK; Huang JH
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5692-9. PubMed ID: 21133093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Comparative Study of Crystallography and Defect Structure of Corneal Nipple Array in
    Varija Raghu S; Thamankar R
    ACS Omega; 2020 Sep; 5(37):23662-23671. PubMed ID: 32984686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconfigurable Antireflection Coatings Enabled by PDMS Oligomer Infusion in Templated Nanoporous Polymer Films.
    Leo SY; Zhang Y; Jiang J; Lin N; Jiang P; Taylor C
    ACS Appl Mater Interfaces; 2024 Oct; 16(42):57792-57803. PubMed ID: 39388478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antireflective coatings with enhanced adhesion strength.
    Khan SB; Wu H; Fei Z; Ning S; Zhang Z
    Nanoscale; 2017 Aug; 9(31):11047-11054. PubMed ID: 28604899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Versatile Antireflection Coating for Plastics: Partial Embedding of Mesoporous Silica Nanoparticles onto Substrate Surface.
    Mizoshita N; Tanaka H
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31330-31338. PubMed ID: 27768270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reflection behavior of two-dimensional super-quadratic subwavelength gratings for silicon-based photovoltaics.
    Chen K; Wu R; Zheng H; Zhang G; Wang Y; Wang H; Chen S
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):647-654. PubMed ID: 31044985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-Broadband THz Antireflective Coating with Polymer Composites.
    Cai B; Chen H; Xu G; Zhao H; Sugihara O
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of hierarchical moth-eye structures with durable superhydrophobic property for ultra-broadband visual and mid-infrared applications.
    Dong L; Zhang Z; Wang L; Weng Z; Ouyang M; Fu Y; Wang J; Li D; Wang Z
    Appl Opt; 2019 Aug; 58(24):6706-6712. PubMed ID: 31503604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resist-free antireflective nanostructured film fabricated by thermal-NIL.
    Kang YH; Han JH; Cho SY; Choi CG
    Nano Converg; 2014; 1(1):19. PubMed ID: 28191399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ZnO nanowire-enabled light funneling effect for antireflection and light convergence applications.
    Sahoo PK; Dev Choudhury B; Joseph J; Anand S
    Opt Lett; 2017 Jan; 42(1):45-48. PubMed ID: 28059174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of radio frequency-sputtered ZnS on the flexible polyethylene terephthalate (PET) substrate.
    Yoo D; Choi MS; Chung C; Heo SC; Kim D; Choi C
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7814-9. PubMed ID: 24266145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glass Flow Evolution and the Mechanism of Antireflective Nanoprotrusion Arrays in Nanoholes by Direct Thermal Imprinting.
    Feng Y; Liu X; Li K; Gong F; Shen J; Lou Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16968-16977. PubMed ID: 33787217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broadband Anti-Reflective Coating Based on Plasmonic Nanocomposite.
    Keshavarz Hedayati M; Abdelaziz M; Etrich C; Homaeigohar S; Rockstuhl C; Elbahri M
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures.
    Xie S; Wan X; Yang B; Zhang W; Wei X; Zhuang S
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31096627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.
    Lee SM; Biswas R; Li W; Kang D; Chan L; Yoon J
    ACS Nano; 2014 Oct; 8(10):10507-16. PubMed ID: 25272244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module.
    Yamada N; Ijiro T; Okamoto E; Hayashi K; Masuda H
    Opt Express; 2011 Mar; 19 Suppl 2():A118-25. PubMed ID: 21445213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Buried nanoantenna arrays: versatile antireflection coating.
    Kabiri A; Girgis E; Capasso F
    Nano Lett; 2013; 13(12):6040-7. PubMed ID: 24266700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.