These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34947705)

  • 1. Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles.
    Mizoshiri M; Yoshidomi K; Darkhanbaatar N; Khairullina EM; Tumkin II
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu Patterning Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles under Inert Gas Injection.
    Mizoshiri M; Yoshidomi K
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink.
    Feng F; Hong H; Gao X; Ren T; Ma Y; Feng P
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Writing of Copper Micropatterns Using Near-Infrared Femtosecond Laser-Pulse-Induced Reduction of Glyoxylic Acid Copper Complex.
    Mizoshiri M; Aoyama K; Uetsuki A; Ohishi T
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31212926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Heat Accumulation on Femtosecond Laser Reductive Sintering of Mixed CuO/NiO Nanoparticles.
    Mizoshiri M; Nishitani K; Hata S
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.
    Lee D; Paeng D; Park HK; Grigoropoulos CP
    ACS Nano; 2014 Oct; 8(10):9807-14. PubMed ID: 25130917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Writing of Cu Patterns on Polydimethylsiloxane Substrates Using Femtosecond Laser Pulse-Induced Reduction of Glyoxylic Acid Copper Complex.
    Ha NP; Ohishi T; Mizoshiri M
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Direct Writing of Heteroatom (N and S)-Doped Graphene from a Polybenzimidazole Ink Donor on Polyethylene Terephthalate Polymer and Glass Substrates.
    Huang Y; Zeng L; Liu C; Zeng D; Liu Z; Liu X; Zhong X; Guo W; Li L
    Small; 2018 Nov; 14(44):e1803143. PubMed ID: 30284372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size Effects of Copper(I) Oxide Nanospheres on Their Morphology on Copper Thin Films under Near-Infrared Femtosecond Laser Irradiation.
    Mizoshiri M; Tran TD; Nguyen KVT
    Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Heater Fabrication Using Amino Acid-Based Ink and Laser-Direct Writing.
    Koo S
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns.
    Cao L; Bai X; Lin Z; Zhang P; Deng S; Du X; Li W
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.
    Ogihara H; Kibayashi H; Saji T
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4891-7. PubMed ID: 22900673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Oxidation of Cobalt Nanoparticles to Obtain Co/CoO/Co
    Lozhkomoev AS; Pervikov AV; Kazantsev SO; Suliz KV; Veselovskiy RV; Miller AA; Lerner MI
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.
    Chung WH; Hwang HJ; Lee SH; Kim HS
    Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser sintering of copper nanoparticles on top of silicon substrates.
    Soltani A; Khorramdel Vahed B; Mardoukhi A; Mäntysalo M
    Nanotechnology; 2016 Jan; 27(3):035203. PubMed ID: 26650565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering.
    Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R
    Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.