These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34947791)

  • 1. Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study.
    Sun N; Wang M; Quhe R; Liu Y; Liu W; Guo Z; Ye H
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and magnetic properties of the Janus MoSSe/WSSe superlattice nanoribbon: a first-principles study.
    Yu L; Sun S; Ye X
    Phys Chem Chem Phys; 2020 Jan; 22(4):2498-2508. PubMed ID: 31939967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study.
    Yin WJ; Liu Y; Wen B; Li XB; Chai YF; Wei XL; Ma S; Teobaldi G
    Dalton Trans; 2021 Jul; 50(29):10252-10260. PubMed ID: 34251008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous curling of freestanding Janus monolayer transition-metal dichalcogenides.
    Xiong QL; Zhou J; Zhang J; Kitamura T; Li ZH
    Phys Chem Chem Phys; 2018 Aug; 20(32):20988-20995. PubMed ID: 30070278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors.
    Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discretized dynamics of exchange spin wave bulk and edge modes in honeycomb nanoribbons with armchair edge boundaries.
    Ghader D; Khater A
    J Phys Condens Matter; 2019 Aug; 31(31):315801. PubMed ID: 31018186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM; Sibatov RT; Kochaev AI
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32303006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic states of graphene nanoribbons and analytical solutions.
    Wakabayashi K; Sasaki KI; Nakanishi T; Enoki T
    Sci Technol Adv Mater; 2010 Oct; 11(5):054504. PubMed ID: 27877361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous curling of graphene sheets with reconstructed edges.
    Shenoy VB; Reddy CD; Zhang YW
    ACS Nano; 2010 Aug; 4(8):4840-4. PubMed ID: 20731459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Even-odd oscillation of bandgaps in GeP
    Li R; Huang X; Ma X; Zhu Z; Li C; Xia C; Zeng Z; Jia Y
    Phys Chem Chem Phys; 2018 Dec; 21(1):275-280. PubMed ID: 30520926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structures and transport properties of a MoS
    Yang Z; Pan J; Liu Q; Wu N; Hu M; Ouyang F
    Phys Chem Chem Phys; 2017 Jan; 19(2):1303-1310. PubMed ID: 27966699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Junctionless Mode in Improving the Photosensitivity of Sub-10 nm Carbon Nanotube/Nanoribbon Field-Effect Phototransistors: Quantum Simulation, Performance Assessment, and Comparison.
    Tamersit K; Madan J; Kouzou A; Pandey R; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges.
    Vacacela Gomez C; Pisarra M; Gravina M; Sindona A
    Beilstein J Nanotechnol; 2017; 8():172-182. PubMed ID: 28243554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.